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Glossary of symbols

Many of the symbols used are listed here with an indication of the
approximate location in the text [eq. number (between parentheses),
Chapter or section number (bold)] where more complete definitions are
given. Some of the symbols used have several different uses or definitions.

This table will hopefully help lift some of this degeneracy.

Symbol Definition Location
a Hyperfine constant 2.1)
a Hyperfine state of H; n, (2.2),53
a Fractional density (6.17)
B,B,, B,, B,, B, Magnetic field (5.1
b Hyperfine state of H, n, (2.2) 53
b Fractional density (6.17)
c Hyperfine state of H, n, (2.2)53
Cy»Cuy Compression (5.5),(5.8)
d Hyperfine state of H, n, (2.2) 5.3
D Atomic deuterium
D} Spin-polarized deuterium
D, Dissociation energy 3,1
D, Spin diffusion constant (8.18)
D|, Nuclear state of D{ (7.7)
E,, E,, etc Hyperfine energies of H and T (2.2)
E,, Eg, etc Hyperfine energies of D (2.3)
E. Fermi energy (7.8)
F Free energy (7.5)
L, F Total angular momentum (2.1)
foo i Recombination parameter (6.15), (6.17)
F, Cut-off function (3.7)
g Nuclear-spin degeneracy (1.1)
g Magnetic g-factor 2,1
8o &) Recombination parameter (6.51)
g Bose pair-distribution

function (7.14)
8. Electronic g-factor 2,1
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Definition

Nuclear g-factor

Bose integrals

Effective spin-relaxation
rate constant

See T-matrix

Spin-relaxation rate constant

Spin-exchange rate constant

Atomic hydrogen

Spin-polarized hydrogen

Double-polarized hydrogen

Zeeman interaction

Hyperfine interaction

Direct interaction

Exchange interaction

Dipolar interaction

Three-body Hamiltonian

Nuclear spin of a composite
system

Single-atom nuclear spin

Exchange constant

Spin current

Boltzmann’s constant

Boltzmann’s constant

Wave vector

Kelvin unit of temperature

Clausing factor

Recombination-rate constant

Effective recombination-rate
constant

Rotational angular momentum

Three-body recombination
constant

Mass

Angular momentum projections
of single atoms

Angular momentum projections
of composite systems

Normal number density

Bulk number density

Initial number density

Condensate density

[Ch. 3

Location

2,1
(1.9), (1.11)

(5.12)
(6.10a)
522
(5.15)

21

21
(3.1)
(3.1)
(3.1)
(6.10a)

(3.5)
(8.10)

(1.1)
4.6

(5.6)
5.2.2

(5.12)
2,1

(5.25)
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SPIN-POLARIZED ATOMIC HYDROGEN

Definition

Number density of state h
Third-body density

Total number of atoms
Number of atoms on surface
Number of atoms in volume
Population of ith state
Population of ground

state

Momentum, momentum of ith

state
Pressure
Spin-polarization
Critical pressure
Polarization

Probability-occupation of state h

Heating rate

Two-dimensional wavevector
Three-dimensional wavevector

Well minima

Kapitza resistance
Spin angular momentum

Entropy
T-matrix
Temperature

Kinetic energy operator

Atomic tritium

Spin-polarized tritium
Temperature of helium
Temperature of wall
Critical temperature
Fermi temperature

Adsorption time
Volume

Vibrational quantum number
Average thermal velocity
Effective range potential
Scattering potential

Dipolar interaction

Direct interaction

Singlet potential
Triplet potential

Location

(2.8)
(1.3a)
(1.5)
(1.3a)
(1.3a)

(1.8)
(1.9)
(1.8)

(8.10), (5.23)
(1.11)
(2.5), (2.6)
(2.5)

5.4

(4.5)

(6.4)

(3.7)

(4.7)

(7.6)
(6.10)

(3.2)

(4.7)
(4.7)
(1.1), (9.7)

(1.2)
(4.3)

(6.4)
(4.3)
(8.6), (9.3)
(6.10)
(6.55), (3.1)
(3.5)
3,1
3,1
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Symbol Definition Location
U.,,. External potential (8.8)
z Fugacity (1.9)
Zy Dimension (5.1)
Zg Boundary of Fermi surface (8.5)
a, a Hyperfine state of D (2.3),(6.17)
a, Sticking probability per
collision (4.3)
a(v) Absorption coefficient (5.22)
B, B Hyperfine state of D (2.3), (6.17)
¥, ¥ Hyperfine state of D (2.3),(6.17)
vy Surface tension (4.6)
0% Recombination ratio (5.19)
Y, Electronic gyromagnetic ratio 2,1
Yo Nuclear gyromagnetic ratio 2,1
r Transition rate (6.3)
I Hyperfine transition rate (2.10)
Y orbital Recombination rate (6.74)
5,6 Hyperfine state of D (2.3),(6.17)
€, £ Hypertfine state of D (2.3),(6.17)
£ L-J well minimum (7.4)
£ Mixing parameter of the
spin-wavefunction (2.4)
E. Mixing parameter of the
spin-wavefunction 2.4)
£, Surface adsorption energy a.n
3 Energy of ith state (1.8)
£, & Well minima singlet and
triplet potentials 31
£ & Hyperfine state of D (2.3),(6.17)
n deBoer parameter (7.4)
n T-matrix parameter (6.10a)
] Mixing parameter of the
spin-wavefunction (2.4)
7. Mixing parameter of the
spin-wavefunction (2.4)
0 Mixing parameter of the
spin-wavefunction 2.4)
0. Mixing parameter of the

spin-wavefunction 2.4)
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Symbol Definition Location
0, Recombination parameter (5.26)
K Two-dimensional wavevector (4.2)
Ag Thermal de Broglie wavelength  (1.7)
o Identical spin rotation

parameter (8.10)
® Reduced mass (6.6)
n Chemical potential (1.8)
M Chemical potential of surface (1.12)
w Magnetic moment (2.2d)
o Free-space magnetic

permeability (5.23)
My Bohr magneton
e Electronic magnetic moment 2,1
My H magnetic moment 2,1
oy Nuclear magnetic moment 2,1
TR Nuclear magneton 2,1
v Reduced mass (6.6)
3 Recombination parameter (5.15)
P Mass density (4.6)
o L—J parameter (7.2)
o Surface number density
a” Spin-exchange cross section (6.89)
Oy Saturation surface density (9.5)
sy v, 3,1
N v, 3,1
To Time constant for escape 5.7
¢ Flux (4.3)
) Angular frequency

1. Introduction

The hydrogen atom with its single electron and proton, each bearing a spin
of 1 is the simplest and most abundant atom in the universe. This simplicity
has made hydrogen one of the most fruitful substances of study for the
physicist, yielding deep insights into the fundamental properties of nature.
Although hydrogen is not naturally found in the atomic form here on
earth, it can be produced in an electrical discharge of molecular H,. The
atomic species in such a discharge is usually short lived, rapidly recom-
bining to form H,. Nevertheless, such techniques can be used to study
single-atom properties of hydrogen. Optical spectra of hydrogenic dis-
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charges, studied near the turn of the century, consisting of discrete spectral
lines led to the Bohr theory of the atom and the development of modern
quantum mechanics. After the second World War a careful study of the
underlying structure in the spectra of the hydrogen atom by Lamb and
Retherford (1950) led to the Lamb shift and the experimental establish-
ment of quantum electrodynamics. Advances concerning the preparation
of inert teflon surfaces suppressed surface recombination of hydrogen to
H, and enabled a low-density short-lived (¢=1s) gas of hydrogen to be
used as the active medium of a maser. The hydrogen maser which
operates on the zero-field hyperfine transitions of the hydrogen atom has
become the most stable time and frequency source in existence (Kleppner
et al. 1962). Recently, denser gases of hydrogen (H) and deuterium (D)
have been successfully “stabilized” in a long-lived state at low tempera-
tures and in high magnetic fields. These gases are called spin-polarized
hydrogen (H|) and deuterium (D). In this chapter we shall review the
properties of these new quantum gases; we shall also discuss some of the
properties of spin-polarized tritium (TJ).

These new quantum gases promise to have many new and exciting
properties in the low-temperature, high-density regime of quantum degen-
eracy. Some of these properties shall be discussed in this introduction,
without going into great detail. As of the writing of this review, it has been
five years since hydrogen was first stabilized in the laboratory (Silvera and
Walraven 1980a). Since that time the field has matured with a large number
of publications concerning both theory and experiment. These can be
classified as factual, promising, hopeful and speculative. It is our objective
to emphasize the first classification, but not to ignore the others. A realistic
assessment of the literature shows that most work and progress has been
made in the area of understanding of the decay mechanisms of H and D.
To meet our objective, in the first four sections we discuss single-atom
properties and interatomic interactions. The two following sections (5 and
6) are devoted to an extensive review of the most important experiments
and to the corresponding theory of decay, respectively. In particular, in
section 6 we have tried to lay out the theory of decay with a unified
approach (with some redundancy for emphasis) and then carefully relate
this to experimentally observable quantities. In section 7 we discuss
thermodynamic properties, in particular from the point of view of the
quantum theory of corresponding states, as well at 7=0K properties.
Section 8 is devoted to magnetic properties of the many-body gas while
section 9 concentrates on many-body phenomena on surfaces or in
two-dimensions. The final section (section 10) is devoted to more speculative
ideas, or how degenerate quantum systems might be produced in the
laboratory.
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1.1. GENERAL

In the condensed state, hydrogen and its isotope deuterium provide physics
with the two fundamental many-body quantum systems of nature, boson-
and fermion-fluids. Hydrogen, composed of two tightly bound fermions,
should behave as a composite boson (Ehrenfest and Oppenheimer 1931,
Freed 1980), and deuterium as a composite fermion (the deuteron is a spin
1 fermion). Tritium should behave as a heavy version of H (the triton is a
spin 3 fermion). Due to its very light mass and weak interactions, a
many-particle system of electron spin-polarized hydrogen (later, we shall
precisely define this state, which we refer to as H ) is predicted to have the
unique property that it will remain in the gaseous state at the absolute zero
of temperature. Under pressure it should pass directly from the gaseous to
the solid state at a pressure of about 80 bar (Danilowicz et al. 1976). We
compare this to the boson fluid *“He which condenses into the liquid state at
a finite temperature. The equilibrium state of spin-polarized deuterium is
more subtle to analyze and recent calculations (Panoff et al. 1982) indicate
that it will liquefy at a low, but finite temperature.

One of the most exciting aspects of these quantum gases is their behav1or
as degenerate quantum gases. At low density (n < 10*' atoms/cm’) hy-
drogen can be treated as a weakly interacting boson gas and is expected to
display Bose—Einstein condensation (BEC) at a critical temperature

ﬁZ n 2/3
T.=331 ;ﬂ;) : (1.1)

Here, k is Boltzmann’s constant, m is the mass, n the density and g the spin
degeneracy, 21+ 1. For hydrogen the degeneracy is the number of
hyperfine states that are populated in the gas.

A real example of a weakly interacting Bose gas has never existed.
However, the Bose liquid, “He, becomes a superfluid below a critical
‘temperature of 2.17 K. London (1938) first suggested that “He was actually
Bose condensed (the calculated value of T, based on the theory of weakly
interacting Bose fluids is 3.15 K) and superﬂuidity was a property of this
phase. However, ‘He condenses into a (high-density) liquid state for
T > T, and there is very little control over the density. As a consequence of
the high density, the ideas and predictions of the weakly interacting Bose
gas are not applicable. Hydrogen, on the other hand, does not liquefy, and
the density can always be controlled so that it behaves as a weakly
interacting gas. The experimental realization of BEC is therefore one of
the major goals of spin-polarized hydrogen research and its achievement
holds the promise of exciting new studies of macroscopic quantum
phenomena.
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Currently, the maximum density of spin-polarized hydrogen that has
been achieved is approximately 4.5 x 10'%/cm’ (Hess et al. 1984), how-
ever, at a temperature 7=570mK which is much higher than the
predicted critical temperature of 43 mK for this density. With current
techniques it is conceivable that densities a factor 3 or 4 higher, corre-
sponding to T, =100 mK, can be achieved, but with great difficulty. In
particular the rapidly increasing recombination rate with increasing density
will make it difficult to dissipate the heat generated by recombination, and
thus difficult to attain temperatures of order 7T at high densities. Limi-
tation to lower densities for the study of degenerate properties is not a
serious restriction since it is this regime of the weakly interacting boson gas
that enables the most detailed comparison with theory. Some suggestions
for achieving BEC in a very low-density, low-temperature sample of
hydrogen shall be discussed in section 10 of this review.

Hydrogen can be condensed on a liquid helium surface having a single,
weakly bound state and two-dimensional translational motion (Miller and
Nosanow 1978). The atoms do not penetrate the helium surface (Miller
1978) and have an effective mass of order one. As such it represents an
almost ideal two-dimensional gas, which among other properties is expect-
ed to display two-dimensional superfluidity (Edwards and Mantz 1980).

The situation for deuterium is quite different. The maximum achieved
density of order 10"/ cm’ (Silvera and Walraven 1980a) can probably be
increased by at least an order of magnitude, although no other experimen-
ters have succeeded in collecting a measurable quantity since the first

report.
The Fermi temperature
B ﬁz < 5 n>2/3
Te= Sk 6w 2 (1.2)

corresponding to a density of 10 cm ™ is 1.828 X 107* K, with g =1.
However, the density requirements are even more severe, as in order to
observe superfluidity due to fermion pairing, densities of order 10" cm™?
(T. = 1K) are required (Leggett 1980).

At lower densities, hydrogen and deuterium have already proven to be
rich systems, and promise much more interesting physics in the future,
both in fundamental and applied aspects. In the past few years our
understanding and knowledge has been vastly increased in the area of
recombination and relaxation; interactions between H atoms and with the
He gas and surfaces have also been studied in detail. The interaction with
the helium surface has turned out to be of fundamental importance and has
presented a host of problems, both theoretical and experimental, ranging
from the determination of the adsorption energy to the Kapitza thermal
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boundary resistance between a gas of the H| and a helium film. A
hydrogen maser operating at low temperatures with helium-covered walls
may have a frequency precision enhanced by a factor of 300 compared to a
room-temperature maser (Berlinsky and Hardy 1981). The spin-polarized
gas of hydrogen is actually a mixture of two hyperfine states, one a pure
(Zeeman) state with electron and nuclear spin projections m,= —73,
m, = — 1 and the other the ground state which is an admixture of electron
and nuclear spin-up and down. A gas of hydrogen in the pure Zeeman state
was first produced by Cline et al. (19€.). This is called double-polarized
hydrogen, or H|{ , as both the electron and nuclear spins are polarized.
In this pure state the recombination rate is greatly reduced and the decay
of the gas is controlled by the much slower relaxation to the admixed
ground state. Recently spin-waves have been observed in a low-density
nondegenerate gas of H|3 (Johnson et al. 1984).

In high-energy physics experimental efforts are under way to use a
low-temperature (high-density) gas of nuclear polarized hydrogen (H{¥)
as a polarized proton source or a scattering target at CERN and at
Brookhaven (Niinikoski 1981, Niinikoski et al. 1984, Kleppner and Greytak
1983), while at Los Alamos an experiment is being developed with a source
of atomic tritium to measure the rest mass of the neutrino. It is expected that
by polarizing the nuclear spins in a fusion reactor, the fusion crosssection and
energy yield will be enhanced (Kulsrud et al. 1982).

At this point in the introduction it is useful to address the question of
why atomic hydrogen is the most abundant material in the universe and yet
does not naturally exist on earth. Atomic hydrogen is a highly reactive gas
and can always enjoy a much more stable state by forming a covalent bond
with another H atom or other elements (H,O, etc.). Let us concentrate on
recombination to form H,. Jones et al. (1958) calculated the probability
for recombination with the emission of radiation and found it to be
extremely small as the radiative transitions are electric-dipole forbidden
for the homonuclear diatomic molecule. As a consequence a third body is
required for conservation of energy and momentum. The rate equation for
the decay of the density n of a gas of H at constant volume is (at this point
we omit the hyperfine-state labels on the density)

dn v 2
T Kin'n, . (1.3a)
Here n = N'/V where N" is the number of atoms in volume V, and n, is the
density of third bodies. For a gas of pure H, K, — K" and n,— n and one
obtains

dn v 3
ar K'n . (1.3b)
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The rate constant K, depends on the initial states of the gas, the
temperature, magnetic field, etc..

A second place where atoms can recombine is on surfaces. For surface
coverage o = N°/A (N° is the total number of atoms on the surface and A4
the surface area) the rate equation becomes

do
5, = Kot (1.4)
This process corresponds to a situation where hydrogen atoms are weakly
bound to the surface and the collision of two atoms in the presence of the
surface, which plays the role of the third body, can result in a recombi-
nation. Here we consider only the second-order process with the rate
constant K for H physisorbed on surfaces such as helium, although there
are examples of first- and third-order surface decay of H. If the surface is
helium, we shall drop the subscript x, so K — K".

In thermodynamic equilibrium there is a relationship between the
surface coverage o and the gas density n, and both » and o can be large so
that recombination of atoms in both phases can be important. Since the
total number of atoms in a system with area A and volume V is
N=N'+4+ N°=Vn+ Ao, combining (1.3b) and (1.4) we find

‘% =-VK'n’ — AK’0”, (1.5)
and the decay of the atoms will depend critically on the details of the
system.

Let us first consider outer space, in the absence of surfaces or other
gases. Here the lowest densities are estimated to be of order 1 atom/cm”.
To characterize the lifetime of the gas we consider the time for the density
to decrease by a factor of 2, or An/n = . From eq. (1.3b) we find

tin=0GKng)", (1.6)
where n, is the initial density. Using K¥ =1.2 x 10" ¥ cm® atom ™" s ™! for
unpolarized hydrogen at room temperature (Mitchell and LeRoy 1977) we
find, as a rough estimate, ¢,,, = 1.25 x 10°? s, a lifetime much longer than
that of the universe. A gas of H at the density of the earth’s atmosphere at
sea level would have a half-life of about 107 s.

In outer space H can condense on surfaces of interstellar grains and be
catalyzed to H,. Likewise, on earth, surfaces can control the decay rate of
an assembly of hydrogen atoms. Metallic surfaces are extremely active with
first-order decay as the dominant process (Wise and Wood 1967) so that
the lifetime is determined by the diffusion of the gas to the surface. For a
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container with metallic walls and with a mean dimension of 1cm and a
mean atomic velocity of 5 x 10° cm/s, the lifetime is a few us. On the other
hand, hydrogen has a very low probability of sticking to a teflon surface
and an atom can strike the surface 10°~10° times before recombining (this
implies a first-order process), leading to a lifetime of order 0.1s for the
same container. The properties of various other surfaces have been
reviewed by Wise and Wood (1967).

On a liquid-helium surface the adsorption energy of a hydrogen atom,
€,, is quite small. As we shall see later in the low-density, high-temperature
limit the adsorption isotherm takes a very simple form

o= nh, exp(e,/kT), (1.7)

where A, = (27h%/mkT)""? is the thermal de Broglie wavelength. For
moderate temperatures and gas densities, the coverage will be quite low
and the decay due to the surface term will be insignificant. We shall present
numerical examples later.

The first production of a long-lived gas of atomic hydrogen (Silvera and
Walraven 1980a) employed liquid-‘He covered surfaces. The gas was
“stabilized” in a high magnetic field of order 7T at low temperature, of
order 300 mK. The high field is of extreme importance in extending the
lifetime of the gas. It maintains the hydrogen in a highly polarized state
which reduces the recombination rate constant by 5 orders of magnitude
for a field of 10 T. In the first experiment the gas (n~10'* cm ™) was
observed to have no measurable decay in a period of 10 min. Later
measurements with densities 2—4 orders of magnitude higher showed that
the gas slowly decays.

A gas of atomic hydrogen is never absolutely stable. The word
stabilization is used to imply that the lifetime of the gas has been increased
by several orders of magnitude. These lifetimes are sufficiently long to
allow the gas to come into quasi-thermodynamic equilibrium and its
properties can be studied by both static and dynamic techniques. To date,
this has always been the observed experimental situation at the highest
densities with the shortest lifetimes. With each stage of increased density,
new barriers to high densities appear. Gases of H|{ have recently been
compressed to achieve densities in the 10'8/cm’ region (Sprik et al. 1983,
1985, Hess et al. 1983, 1984). At these densities three-body volume and
surface recombination becomes the dominant and limiting process.

1.2. BOSE STATISTICS

The phenomenon of Bose—Einstein condensation for the ideal gas is found
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by a careful examination of the Bose distribution function

— g
N~ plle, — Y IRTT 1 (1.8)

where N, is the average population of the ith state, g the spin degeneracy, u
the chemlcal potentlal and ¢, the energy. The volume (V) den51ty, n, is
found by summing (1.8). For the noninteracting gas with &, = p?/2m, this
is evaluated by converting the sum to an integral over p, after first
separating out the p =0 term. By the usual procedure (Huang 1963) one
finds

N
n= 7 + g3 8:,2(2), z= exp( kT) (1.9)
h

where g, (z) = X7, z/I" is a Bose integral with g;,,(1) = 2.612. N, is the
number of particles in the zero-momentum state, the condensate. The
chemical potential is always negative and approaches zero as the tempera-
ture is reduced. Bose—Einstein condensation takes place at a finite
temperature

ﬁZ n 2/3
T.=3.31— <§> (1.10)

when the argument of g;,, becomes 1, or u—0. N,, which is microscopic
for T > T,, becomes macroscopically populated, of order N, the total
number of atoms in the system. Expression (1.10) remains valid for a
weakly interacting gas. However, in this case u takes on a small positive
value (the interaction energy) for T<T..

The pressure of the gas at BEC is

P = (kT/’\?h)gS/z(l) ) (1.11)

where g;,,(1) = 1.342. For the weakly interacting gas, the critical pressure
increases with the strength of the interaction (Huang 1963).

For a two-dimensional surface of area A the same procedure is carried
out, only we now extend the energy of g = p2l2m—g,, where ¢, (a
positive number) is a single-particle surface adsorption energy and p; is a
two-dimensional momentum. The integral can be evaluated in closed form
to find the surface coverage
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o = —(g/AL)In{1 - exp[(p, + £,8 ) /kT]}, (1.12)

where p is the chemical potential of the atoms on the surface. In this case
the p =0 term plays no special role and the expression diverges for
u, + €, ' =0. Bose-Einstein condensation does not take place (how-
ever, the two-dimensional system can have a normal-superfluid phase
transition).

Let us now consider the case of a gas H|, in contact with a surface. (For
simplicity we shall take the degeneracy g=1.) The total number of
particles, N = nV + g A, and the distribution of particles over V and A at
equilibrium are found by setting u = u, in egs. (1.9) and (1.12); this yields
the adsorption isotherm. For the ideal gas an unphysical result is found!
When u, = —¢ , the number of particles on the surface, eq. (1.12),
diverges. The addition of further particles cannot increase u to zero, so
BEC cannot occur in the gas phase. Silvera and Goldman (1980) and
Edwards and Mantz (1980) resolved this problem by taking into account
the interaction energy of the two-dimensional gas of H|; we shall discuss
this is section 9. Expression (1.7) for the adsorption isotherm is easily
found by setting u = p, in egs. (1.9) and (1.12) in the high-temperature,
low-density limit.

In the ensuing sections of this review, we shall first describe the
single-particle properties and the interatomic interactions, before discus-
sing the techniques of stabilization. We shall then deal with the theory of
recombination and spin relaxation, thermodynamic properties, magnetic
properties, and interactions with surfaces. This will be complemented with
a presentation of the experimental determination of the physical properties
in section 5. The emphasis will be placed on H with a number of
complementary treatments of D; T will receive relatively little attention. In
section 10 we present some of the speculations and difficulties to be
encountered in attempts to achieve BEC.

An alternate means of stabilizing atomic hydrogen was studied some
years ago: matrix isolation in a solid lattice (H in H,, for example). These
so-called free-radical studies (Bass and Broida 1960, Hess 1971) have
many interesting properties, but because the atoms are immobile and
isolated from each other, the aspects of Bose and Fermi gases are
suppressed. The subject will not be treated in this review. A general review
of atomic hydrogen has appeared about three years ago (Silvera 1982);
recent reviews by Walraven (1984) and Greytak and Kleppner (1984) are
more up-to-date. Hardy et al. (1982) have reviewed resonance techniques
as applied to low-density hydrogen in low magnetic fields; Nosanow (1980)
has reviewed some of the thermodynamic properties of spin-polarized
quantum gases.
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2. Single-atom properties

The atomic hydrogens (H, D and T) are one-electron atoms with ’S\ )
electronic ground states. Higher excited electronic states fall outside the
region of interest in this chapter; we shall confine our attention to the ground
state spin multiplet. The proton and triton have spin i = 3 whereas the
deuteron has spin i = 1 with associated magnetic moments for the electron,
p, = — g, ups and the nucleon, py = g, u,i. Here uy and p, are the Bohr
magneton and the nuclear magneton, respectively; g, and g, are the
corresponding g factors. Values of the constants are given in table 2.1. We
note that . is oriented antiparallel to s so that in a magnetic field the
lowest energy state of the atoms will have the electronic magnetic moments
parallel to the field but the electronic spins antiparallel. We also define the
gyromagnetic ratios here: v, = g, ug/% and vy, = g, p,/A.

Throughout this article we use u, and uy for nuclear and electronic Bohr
magnetons, respectively; uy, py; and u, refer to magnetic moments of the
nucleus, H atoms and electrons, respectively. Similar notations are used
for the g-factors or gyromagnetic ratios. Furthermore, we use lower case
letters to denote spin or angular momentum of single particles and upper case
to distinguish that of a molecule or a pair of atoms. J is used for the rota-
tional angular momentum of an H, molecule, whereas I (or L) is used for
the angular momentum of unbound (scattering) pairs of atoms.

2.1. HYPERFINE ENERGIES AND STATES

There are two single-atom interactions which lift the spin degeneracy: the
Zeeman and the Fermi contact hyperfine interactions given by

H=H,+ H,,=—(—8.MpS T guMoi) B +ai-s. 2.1)

Diagonalization of this Hamiltonian to find the hyperfine energies is
straightforward. In zero field the total angular momentum f=s+iis a
good quantum number, whereas in high field (u,B > a), the spin projec-
tions m_ and m;, (thus, also m,) are good quantum numbers. The energies
of the states for hydrogen and tritium are:

E,=—ta—Lta[1 + (" Bla)]'"?, (2.2a)

E,=ja- in B, (2.2b)

E.,=—1ta+ia[l1+(p*Bla)]'"?, (2.2¢)
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E,=ta+1ip°B, (2.2d)

where p* =g g = g 1,
For deuterium we have 6 hyperfine states, with energies

E =-1A —%a—laR", | (2.3a)
E,=3A,— ja— 3aR™, (2.3b)
E ,=-3A,+4,+a, (2.3¢)
E,=1A -la+1aR™, (2.3d)
E.=-31A —jia+3iaR", (2.3¢)
E,=3A,— A, + ja, (2.36)

with A, = g_u,B; A, = g, m, B, and R* =[(u*B/a = })* +2]'"2. Note that
in egs. (2.2) and (2.3) the hyperfine constant @ (which has not been given a
subscript) actually has different values for D and H, given in table 2.1.

The energy levels are shown in fig. 2.1 along with the states in the low-
and high-field limits. We note that in high field, the upper levels cross when
the nuclear Zeeman energy is equal to half the hyperfine energy, or
B=al/(2g,1,)=16.7T for H, D and T. The crossing field is the same for
all three isotopes, since the hyperfine constant is proportional to the
nuclear magnetic moment.

The high-field limit holds for B > a/u” which is 507 and 541 G for H and
T, respectively, and B> a/2u" =58.5G for D. Hydrogen, tritium and
deuterium all have two pure Zeeman states, b and d (for Hand T) and y
and ¢ (for D). All other states are mixed-spin states. The mixing
parameters in the figures are

for Hand T: e=sing={1+(p"Bla+[1+(n"Bla)’]"*)"}7';

n=cosd, (2.4a)
for D: e.=sinf. = {1+ 4(Z* + R*)}} "%,
7. =cos 9. , (2.4b)

with Z* = (u*B/a) + . In the high-field limit (6, 6. —0), e— a/(2n" B)
and £, — a/(V2u"B). For a magnetic field of 10T, & and &, are
2.54x 107> (for H) and 8.26 X 10™* (for D), respectively. The 7 and 7.
are defined here for later use.

‘t&_zQ = ,aflb




159

SPIN-POLARIZED ATOMIC HYDROGEN

Ch. 3, §2]

‘SUORISURI} 90URUOS3I [RUIPNNSUO] 3y} 21k Yy ‘A[2Anoadsal
‘suonjisUel} JIUOIIAd pUB Ieo[onu a1e ‘¢ pue ¥y "SMOLIE [E2110A Ul paledipul oI suopnisuen s[odip-onaudew
POMO[IY " PISY d1oueW JO UOTOUN] B SE WNLIINAP pue winijLy) ‘uafoIpAy jo sajels pue saidious suytadAy oy, -1°7 814

<111*6 500 - <QllI*OuIS =<D|
<0179 $02 ~<l-}I"QuIS =<g|

<l-tl=<A|
<07l"QuisS+<|-]|"9 S0 =<Q|
<IM*QUIS+ <0l S02= <3|
<lii= <3|

we— g ‘0 %0

<311©S02 -<3l| O UIS=<D|
<fM=<q|

<iTl OUIS+ <311 © SO0 =<2
<3lI=<p|

oe—8 ' 086

Ady 385
/>./_ D.Um w.dn*

1y
8 PAg -

9

PENIEIN

W.

wniaineqg

CEN

/nl _

om:Jl Ao:m\/xi_ l\/

ppg oD,

g 2qg

2
PN

<ly Sl wnijiag - uabouspAH

KN NN m:N (")IN —iN -—lN

_,
it &
~<C
[

v _ ZA.
of- (<tT1-<tu) k\/ <00l
v <ITl =< -]
o] ——{ <stie<tu) $A=<ou
<tll =<lll
3 0=8' me =g uls
AHEWE_ AM_EH__




160 L.F. SILVERA AND J.T.M. WALRAVEN [Ch. 3, §2
2.2. ELECTRON SPIN POLARIZATION

In thermodynamic equilibrium at low temperatures and high fields the
polarization of the electron spins is almost complete. From egs. (2.1) we
find that for a field B=10T, the splitting between the lowest and the
highest pairs of hyperfine states amounts to AE/k =13 K. For a tempera-
ture of 200mK the thermal occupation of the |c) and |d)-levels is
suppressed by a factor 10°*. Unfortunately, this does not mean that the
electronic spin ‘“‘up” component is also suppressed by this amount, because
the lowest hyperfine state (state |a) in fig. 2.1) has an admixture of spin
“up” due to the hyperfine coupling between the nuclear and electronic
spins.

To be quantitative, it is useful to introduce the concept of state
polarization,

Pstz(Pab—Pcd)/(Pab+Pcd)7 (253)
and electron spin polarization,
P,= (P}~ P1)/(P|+ PT), (2.5b)

Here P;; is the probability that an atom is in state i or j, P, = P, + P;, and
one easily finds P, = tanh(ug B/kT)=1— 2 exp(—uy B/kT) for the high-
field, low-temperature limit. For B=1071, P, is essentially temperature-
independent for a temperature below 1K.

To determine P,, we evaluate Pl=5X, P,|(||h})|° and Pt=
T, P,|{1|h)]>, where |h) is a hyperfine state and P, the occupation
probability. Let us examine the case in which P, =1, i.e., only the
hyperfine states a and b are occupied. For hydrogen we easily find
P,=1-¢" =1~ (a/4uyB)’ for high fields. We see that the electron spin
polarization depends on the degree of admixture, which is controlled by
the magnetic field. As shown by eq. (2.4a) it cannot be rendered negligible
with currently accessible fields. For a field of 10 T, (a/4ugB)* = 6.4 x 107°,
which is rather small, but by no means negligible. Insections 5 and 6, we shall
see that for H|, this small admixture of reversed electronic spin provides an
open channel for recombination to the 'S ;" bound molecular H, state, with
rate proportional to &°; similar considerations hold for D| and T|. Finally
we note that if only the hyperfine state |b) is populated, then the sum has
but one term and P, = 1.

2.3. MAGNETIZATION

For an assembly of hydrogen atoms, each with magnetic moment pu,,,
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the magnetization is
M =2 py(r,, B)S(r—r,). (2.6)

The effective magnetic moment of the hydrogen atom depends on the
hyperfine state, |h), and is given by

py(h) = -V E,, 2.7)

where E, is the energy of the state, eqs. (2.2) and (2.3), and Vj is the
gradient with respect to the magnetic field. The magnetic moments for the
four hyperfine states of hydrogen are shown in fig. 2.2 (we ignore uy since
R, > t); a similar diagram exists for D. For later purposes it is useful to
consider the magnetization in high field, where only hyperfine states la)
and |b) are populated. Then from eq. (2.6) we find

|M|=geI‘LB%(na+nb)+gn“‘n%(n‘a_nb)' (28)

Here n, and n, are the number densities of atoms in states a and b. Since in
the high-field regime a gas of a- and b-state atoms corresponds to electron
spin-polarized hydrogen we see that in this case the magnetization is
proportional to the atomic density » of the gas, to the approximation that
the nuclear magnetization can be ignored.

c
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Fig. 2.2. The effective magnetic moments for the four hyperfine states of hydrogen, shown in
fig. 2.1, as a function of applied magnetic field. States a and c reach their high-field values for
B> 507 G (after Silvera and Walraven 1981a).
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2.4. ESR AND NMR TRANSITIONS

The hyperfine energy level diagrams can be studied by means of magnetic
resonance. The problem is analyzed in terms of the Hamiltonian eq. (2.1)
in which B = B, + 2B, cos wt, B, being a small polarized rf perturbation
field and B, the applied static field. The transition rate from an initial state
|h) =|sm,, im;) to |f) =|s'm., i'm}) is given by

27
Le=P, 2 [CIV] ) 8(E, - E, — ho), (2.9)

where P, is the probability that an atom is in hyperfine state |h) and V is
the perturbation for magnetic dipole transitions, V= —2u,; B cos wf. ESR
transitions are allowed which only involve a change in the electron spin
(Am, =1, Am;=0), or NMR transitions which only involve a change in
the nuclear spin (Am, =0, Am; = 1). Pure ESR and NMR transitions only
occur in high magnetic fields, where the mixed nature of the hyperfine
states |a) and |c) may be neglected. In addition, for low external fields, a
longitudinal resonance (B,//B) with |f, m;)— |f + 1, m;) is allowed. The
field dependence of the transition frequencies for hydrogen is shown in fig.
2.3.

We shall make a few general remarks about the line strengths, which are

105: T T ]]IIIII T T ||ll||| T T, IIIIIII l:
" HYDROGEN ]
10°E E
T [ Fac ]
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N L i
e 3 \//
0107 3
3 L Nabs '3
£of Ned ]
- i_
2 i
10 sl Lol vl I
1072 107 1 10
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Fig. 2.3. Magnetic-field dependence of the hyperfine transitions in the hydrogen atom. The
notation is given in fig. 2.1. F,_is the transition used in the hydrogen maser; N, §,,and S,
have also been observed experimentally in H| and H{{.
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proportional to the square of the magnetic transition moment. ESR
transitions are of order (g ug/g.m,) =4.4 X 10° stronger than NMR
transitions. We note that the a— b and c—d transitions, which are pure
NMR transitions in the high-field limit, are greatly enhanced at low field
due to the spin state mixing caused by the hyperfine interaction. For
longitudinal resonance the transition rate I «sin 26 (sin 0 is given in eq.
2.4a). This rapidly weakens with increasing field, i.e.

I(B#0)/L,(B=0)=sin2§=a/u"B=2¢. (2.10)

The hyperfine states have very long lifetimes and as a consequence the
natural linewidths are extremely small. The observed linewidths are
.determined by radiation damping or inhomogeneities in the external field
B. The latter is generally the most severe limitation. There are two field
regimes where this problem can be minimized: for the a— c transition at
approximately zero field and for the (a— b) or (c—d) transition at
B =0.648 T (at 765.48 MHz and 654.92 MHz response, respectively). For
both fields, the derivative of the transition energy with respect to field is
zero (see fig. 2.3). Due to this, field broadening is a second-order effect
and less important.

The first resonance experiments on gaseous atomic hydrogen at low
temperature were designed to optimize sensitivity for low-density gases,
exploiting the considerations discussed above. Crampton et al. (1979)
studied the a—> c transition in a field of approximately 107> T, whereas
Hardy et al. (1979) studied the a— b transition at B =0.65T. At both
fields the homogeneity requirements are quite modest and a field of 0.65 T
is still low enough to assure a considerable hyperfine enhanced transition
probability. Hardy et al. (1980a,b), Morrow et al. (1981) and Jochemsen et
al. (1981) used zero-field resonance techniques to study H below 1 K. At
the high magnetic fields (B = 5 T) required to study the spin-polarized gas,
the homogeneity requirements are severe. Yurke et al. (1983) studied the
build-up of nuclear polarization using NMR. van Yperen et al. (1983)
succeeded in using ESR on the a—d and b—> c transitions to study the
time evolution of the hyperfine occupations n, and n, in a stabilized gas of
hydrogen; Statt et al. (1985) have also used ESR to study properties of H
in high fields. Recently, Johnson et al. (1984) have observed nuclear
spin-waves in a low-density gas of hydrogen in high fields.

3. Interatomic interactions

One of the most attractive aspects of the hydrogen system is the high
degree of precision to which the intraction between pairs and with external
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fields is known. Unlike most larger atomic systems, these ab initio
potentials have been confirmed by experiment. In addition, the pair
approximation, i.e. the approximation that the interaction energy of the
many-body system is the sum of the pair interactions, is a very good
approximation for most properties of interest. The Hamiltonian of a gas of
atomic hydrogen can be expressed as
H=T+H,+H,+H,+H,,+Hy,. 3.1)

exch

Here the kinetic energy is
T=2 p2/2m, (3.2)
i

the Zeeman energy is

‘HZ =-B '2_ (_gel‘l‘st + gnl“l’nij) ’ (3'3)
]

and the hyperfine interaction is

Hy=aXi-s,. (3.4)
j

Terms (3.3) and (3.4) have already been discussed in the previous section
and are responsible for the mixing of the spin states (fig. 2.1). In addition,
during a collision there is a hyperfine interaction between an electron on
one atom and a nucleus on another, which we shall ignore.

The most important pair interaction, which determines the binding of
atoms into a stable molecular state, is Hy + H,,, due to the Coulomb
interaction. This interatomic potential has been calculated from first
principles by Kolos and Wolniewicz (1965, 1974, 1975) and is the most
accurately known pair potential of all atomic systems. In the ground
electronic state, ignoring nuclear spin (i.e., the hyperfine interaction),
there are two potential curves: the singlet, S =0, and the triplet, $=1,
state, where S =s, + s,. In fig. 3.1 we see the singlet potential '3 ; =V,
which has a well minimum &,/k = 55100 K at r_,, = 0.74 A. This potential
supports bound states. Dabrowski (1984) has extensively analyzed the
spectrum of H, and made comparisons between theory and experiment.
The ground vibrational-rotational state of H, has an experimental dis-
sociation energy of D,(H,)=36118.3(3)cm '=51967K (Herzberg
1970), D,(D,)=36748.88(30)cm ' =52874K (LeRoy and Barwell
1975). The best value available for T, is probably the theoretical value of
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Fig. 3.1. (a) The singlet and triplet interatomic potentials of hydrogen according to
calculations of Kolos and Wolniewicz (1965, 1968, 1974, 1975). (b) The potentials of (a) in a
high magnetic field on a magnified vertical scale.

Kolos and Wolniewicz (1968): D,(T,)=37028.89 em” ' =53277K.
LeRoy (1971) has made the most extensive study of the number of bound
and quasi-bound states of the 12;“ potential of H, using the Kolos—
Wolniewicz potential and finds 301 bound levels and 47 quasi-bound states.
The quasi-bound states are long-lived states with anenergyin the continuum.
These are resonance states of the effective potential, i.e., the singlet or triplet
potential plus the (repulsive) rotational barriers. A few of these potentialsare
shown in fig. 3.2 for both the singlet and triplet potentials, and high-lying
bound states near the continuum are shown for H in fig. 3.3. Potential
parameters and energy levels will differ for D, and T, due to the dependence
of zero-point energy on mass (table 7.1).

Dué to the indistinguishability of the protons, the wavefunction of the
H, molecule must be antisymmetric under proton exchange. This imposes
a restriction on the molecular quantum numbers. Under nuclear exchange
the rotational part of the wavefunction ¢, is symmetric for even rotational
quantum number J and antisymmetric for odd J. The allowed values of the
nuclear spin states are /=1, where I'=1i, +i,. The three /=1 states
correspond to symmetric wavefunctions; I =0 to antisymmetric. As a
consequence of this, molecules with even J have I =0 and odd-J ones have
I=1. The former is called para-H,, the latter ortho-H,. The same
combinations and notation exist for T,, whereas D, must have a symmetric
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Fig. 3.2. The effective triplet interatomic potential of hydrogen, including the centripetal
barrier, for a few of the lower rotational states. The angular momentum J is designated L in
the text (after Walraven 1984).

wavefunction under nuclear exchange as the spin of the deuteron is 1. The
designations and states are summed up in table 3.1.

In contrast to the singlet state, we see in fig, 3.1a that the triplet potential
’5 I =V, is essentially a repulsive interaction on the scale shown. Since the
long-range Van der Waals interaction is always attractive and the repulsive
electronic overlap forces are short-range, the atoms must have a negative
potential well. The well can be seen on the expanded scale in fig. 3.1b
(curve labeled M, = 0). Its well depth of e/k=6.46K at r_, =4.16 A is
insufficient to support a bound diatomic-molecular state. In the same figure
we show the effect of an applied magnetic field. Taking into consideration
only the electronic magnetic moment, we see that the singlet potential is
field-independent, whereas the degeneracy of the triplet potential is lifted
by the field.
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Fig. 3.3. High-lying bound states near the continuum of the singlet potential of hydrogen.
(After Walraven 1984.)

It is noteworthy that the attractive part of the H-H triplet potential is
the weakest of all interatomic potentials. For comparison, in fig. 3.4 we
show a number of other potentials for weakly interacting species. It is
believed that two *“He atoms with a well depth of &/k =10.5K will just
form a bound state with dissociation energy D/k <1K, although the

bound dimer has never been observed.
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Fig. 3.4. Lennard-Jones potentials of some weakly interacting pairs (after Silvera 1984).

Later in this section, after a complete discussion of interactions, we shall
return to discuss how spin polarization can be used to stabilize atomic
hydrogen. We now express the direct and exchange term of eq. (3.1) in
terms of V, and V,:

Hy+ H,, o, = 3 2 VD(ri;) +3 Z J(rij)si R (3.5)
iJ ij

where V= 3(V,+3V)) and J=V,—V,. A rather accurate fit to the
tabulated potential values of Kolos and Wolniewicz (1974), useful for
calculations, has been given by Silvera (1980):

V, = exp(0.096 78 — 1.101 73r — 0.039 45r%)

6.5 124 3285)

+Fc(r)(— P R

(3.6)
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with the cut-off function

04 S
Fc(r)zexp_<—]¥._l> ’ r<1'28rtmin’

=1, r>1.28r, i s 3.7

where r, ;. is the minimum in the triplet potential curve. In eq. (3.6)
atomic units are used (1 Hartree = 219 474.6 cm ™', 1 Bohr = 0.529 177 A).
The fit is based on approximating the potential with an exponential
repulsive part (first term) plus the long-range attractive part (second term)
which is exponentially attenuated at short distances as proposed by
Abhlrichs et al. (1976). The exchange energy can be fit over a range from 1
to 12 Bohr by

J(r) = exp(—0.288 — 0.275r — 0.176r> + 0.00687°) . (3.8)

V. can be obtained by combining eqs. (3.6) and (3.8), however, this is
restricted to r > 1 Bohr since Kolos and Wolniewicz did not tabulate the
potential for smaller values of r. For calculations with V in the region of its
well, the tabulated values are recommended, with interpolation for
intermediate points.

A word of caution is in order for using the Kolos and Wolniewicz (KW)
potential curves for calculational purposes. The ‘‘best” tabulated values for
the singlet- (1975) and triplet-potential (1974) energy curves (KW 1975
and KW 1974, respectively) are obtained within the Born-Oppenheimer
approximation. To reproduce the experimental values for the vibrational
and rotational levels this potential is not sufficient and one also has to apply
adiabatic, nonadiabatic and relativistic corrections (for phenomena not
included in eq. 3.1), which are incompatible with the simple potential
concept (see Kolos and Wolniewicz 1975, Wolniewicz 1983). Bishop and
Shih (1976) have proposed an effective Schrodinger equation to calcu-
late nonadiabatic rovibronic energies, yielding improved agreement
with experiment. For some properties (like spin exchange) at very low
temperatures these small corrections may have a rather dramatic effect,
depending on the exact location of the H,(v =14, J=4) vibrational-
rotational level, which is close to the dissociation limit (see Dabrowski
1984).

The final set of important interactions for the hydrogens are the
magnetic dipole—dipole interactions, which can involve electron—electron,
electron—nucleon and nucleon—nucleon magnetic dipole interactions. All
are of the same form and can be written as
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Ho= 225 L S f6)
el ) M VG )] G99
where
s, 4) =[5, 8, —3(s; - f,;j)(i,- Pl (3.9b)

Here r; is the distance between spin s; and i; and 7, is a unit vector. As we
shall see later, the term H_, is the dominant cause of relaxation between
the hyperfine levels in high magnetic fields and is responsible for three-
body recombination of highly polarized atomic hydrogen at high densities.
In general, the term f(i;, {;) is negligible.

Until now we have only discussed the electronic singlet and triplet
potentials of the H-H interaction. When nuclear spin is also taken into
account, due to the spin multiplicity (4 X 4 = 16 spin states), the number of
interaction potentials is far greater, but it usually suffices just to consider
the singlet and triplet. Nevertheless, it is useful to consider all the possible
potential curves.

First, consider the interaction potentials between a pair of H atoms in
zero magnetic field. In the absence of the hyperfine and dipolar interac-
tions, we have the ground-state singlet and degenerate triplet potentials.
Harriman et al. (1967) have analyzed the H-H hyperfine curves and
Milleur et al. (1968) D-D curves; Uang et al. (1981) have treated H-D,
D-T and H-T in an applied magnetic field. The H-H potentials are
shown in fig. 3.5. There are 16 hyperfine states, but due to degeneracy,
only 11 distinct potential curves exist for H-H (36 with 22 distinct
potentials for D-D). Hy, H.,.,, and H,, depend strongly on the nuclear
separation, whereas the hyperfine constant, a, is independent of range,
except for very close approach. Comparing the magnitudes to a, we find
a=(py/4m)(p2/r®) for r=3.3 A (6.2 au); the hyperfine splitting is equal
to the singlet—triplet splitting [a = J(r)] for r=5.8 A (11 au).

For the long-range region, r=>6.75 A, the exchange can be ignored
(J/a<0.1) and f, = 5, + i;, m, are good quantum numbers. For separated
atoms (J, u>/r’—0) in zero applied field, there are three curves with en-
ergies — 3a, — 3a, and 3a with 1-, 6- and 9-fold degeneracies, respectively.
These correspond to both atoms singlet, singlet—triplet, and triplet—triplet,
respectively. For intermediate ranges, 5 < r < 6.75 A, all terms in eq. (3.1)
must be considered. For short ranges, r<5A, H_,, is dominant and
S=s,+s,, M, and I =i, +i,, M, are all good quantum numbers. For
longer ranges, where [ is no longer a good quantum number, the
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Fig. 3.5. Spin independent part of the 16 (5 are degenerate) interatomic potentials of H for

the hyperfine states as a function of separation R given in Bohrs. For large separation there

are three curves with degeneracies 1, 6 and 9 and energies —3a/2, —a/2, and a/2 depending

only on the single atom hyperfine interactions (after Harriman et al. 1967, their notation is
used).

ortho-para classification made for short ranges in terms of the quantum
number / can still be made in terms of J. A simplified argument can be
made by considering large distances, so that we are only concerned with
atomic exchange. Since the Hamiltonian, eq. (3.1), is symmetric under
permutation (P) of two atoms (see table 6.4a), the spin states can be
separated into 10 symmetric (P =+1) and 6 antisymmetric (P = —1)
states. Under atomic exchange the wavefunction must be symmetric for
the composite particles. Thus, the six odd-spin states must couple with
the odd-orbital (ortho) states, and the other 10 spin states must have even
rotational quantum numbers (para). The restriction to atom exchange is.
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easily lifted, but the argument is longer. For deuterium one finds 15
symmetric and 21 antisymmetric spin states (see table 6.4b).

It is now clear that the spin character of a state depends on the range. In
order to characterize a potential curve as triplet or singlet, it is useful to
examine the fractional triplet character of a pair of interacting atoms which
is given by

1(8§%)y =32+ (s,"5,). (3.10)

This has the value 1 for a pure triplet state and 0 for a pure singlet, and
varies with separation for other states. Similarly ; (I*) gives the fractional
triplet character of the nuclear spin.

Consider now the effect of an applied magnetic field. In the infinite-field
limit m; and m, are good quantum numbers for individual atoms. For pairs
of atoms the electromc singlet has Mg =m_ + m =0 and the triplet has

=1, 0, —1 as shown in fig. 3.1. Inclusmn of nuclear spin increases the
number of states to 4 and 12 for the singlet and triplet, respectively; these
additional states and splittings are not shown in fig. 3.1.

For a high, but finite, field the triplet character of the states can be
determined by evaluating eq. (3.10). Consider two hydrogen atoms at
large separation in the |b) state (fig. 2.1), then 3 ($*)=1. However for
two |a)-state atoms the amount of triplet character is 3 + §(2sin® 6 —
1)> = (1 —sin” 9) for high fields; the atoms have a small but finite singlet
character. For short range the exchange will dominate and § becomes a
good quantum number; the interaction is then either singlet or triplet in
nature.

Let us now discuss how spin polarization stabilizes a gas of atomic
hydrogen. Since a pair of atoms interacting on the triplet potential cannot
form a bound state, clearly, if an assembly of atoms could be maintained in
the spin-polarized state such that all pairs mutually interact on the triplet
potential, the gas will be stable against recombination to H,. An assembly
of atoms in electron spin-down states (high-field hyperﬁne states |a) and
Ib) of fig. 2.1) is called spin-polarized hydrogen and symbolized by H|; an
assembly in the electron spin-up states |c) and |d) is represented by HT. If
the assembly of atoms are all in the |b) state, this is called doubly-polarized
hydrogen, H|{. From the discussion of the previous paragraph we see that
for H{{, all pair interactions are pure triplet and we expect this to be more
stable than H|. The wavefunction of a pair with at least one atom in the
a-state will, in high field, have a small yet finite degree of singlet character,
enabling recombination to the molecular state. Analogous definitions are
used for deuterium (D) and tritium (T). Finally, we note that if an atom in
the |a) or |b) state interacts with one in the |c) or |d) state, the interaction
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contains a strong singlet component and recombination during a collision
has a much greater probability.

From fig. 3.1 we see that in zero-field the singlet state is lower in energy
than the triplet state for all separations. At 7=0K the singlet is the
equilibrium state to which a triplet state will relax, followed by recombi-
nation into the bound molecular state. At elevated temperatures (T >
2ugB/k) then the thermal occupation of singlet to triplet state is 1:3 (for
H, D and T). If equilibrium is maintained, the gas will continue to rapidly
recombine until no atoms remain. With an applied magnetic field, the
triplet M, = —1 state is lower in energy than the singlet. Outside of a
certain range and for low temperatures (T <2uyB/k) where H} is the
equilibrium state, a great degree of stability is offered to the system. Again
at high temperatures, population of singlet states enables recombination to
rapidly proceed. However, even at low temperature, we note that since a
gas of H| is always in motion the region with V, <V, is accessible and at
best we can speak of metastability for magnetic fields that are available in
the laboratory.

4. Single-atom interactions with helium surfaces

In the study of the lifetime enhancement of a gas of atomic hydrogen, the
surface appears to play a dominant and controlling role for all densities, at
low enough temperatures. As already mentioned in the introduction, at
elevated temperatures the interaction with most surfaces, in particular
metals, leads to very rapid recombination. Two types of recombination
processes can be identified on surfaces with attractive potentials for atoms.
In one, deep traps are rapidly filled with hydrogen atoms; mobile atoms
recombine at these sites to form H, and the sites are then again rapidly
filled by another atom. This leads to a first-order decay process of the
surface number density o, i.e. ¢« —¢. In the second type of process,
mobile atoms on the surface interact with each other to recombine; this can
be a second- or third-order process.

Early experiments by Crampton et al. (1979), Hardy et al. (1979) and
Silvera and Walraven (1979) demonstrated that H could be observed for
T =5K, although lifetimes were quite limited. In the initial stabilization
experiments of H| (Silvera and Walraven 1980a) at low temperatures
(T <1K) and high fields, it was found that on ordinary surfaces H|
rapidly recombined and no detectable sample could be produced. How-
ever, when the surfaces were covered with a thin film of *He, H} could be
collected for long périods of time. The reason for this is that H has a very
small adsorption energy, ¢,, on ‘He, and according to eq. (1.7), o =

a?
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nh,, exp(e,/kT), the surface coverage should be small. On *He, only
second- and third-order decay processes are significant, and these become
negligible for 7= ¢,/k due to the small value of o. Because of its
importance, we shall concentrate our attention on this surface.

The properties of free-helium surfaces have been reviewed by Edwards
and Saam (1978) and more recently by Edwards (1982). The currently
accepted picture is that *‘He presents a flat, translationally invariant
impenetrable surface to hydrogen, with an adsorption energy, €,/k=1K.
The adsorption potential is believed to be about 5K deep with a single
bound state; ¢, is the energy required to remove an H atom from this
surface state. The expectation value for the distance of the atom above the
surface is about 6 A. The atom moves on the surface as an almost
free-particle in two-dimensional momentum states, with effective mass
m == my:

The helium surface itself is flat (but not rigid, as elementary excitations
such as ripplons exist) and there is no evidence that the adsorbed hydrogen
causes a significant puckering or dimpling of the underlying surface. The
helium density does not reduce abruptly from its bulk value to zero at the
surface, but has a more gradual fall-off similar to a Fermi function with a
width of a few A (Edwards and Fatouros 1978). Recent calculations
(Pandharipande et al. 1983) indicate that this width may be as large as 7 A.

The interesting question of whether hydrogen and its isotopes penetrate
into bulk helium has been addressed by Miller (1978, 1980), Guyer and
Miller (1979), and more recently, by Kiirten and Ristig (1985). The
latter, more rigorous calculation confirms the general trends of the earlier
results. The quantity calculated is the change of the chemical potential, w,
when a He atom from the bulk is replaced with a foreign atom. For positive
u, the atom does not penetrate into the bulk (at 7= 0K) unless it has
kinetic energy w. At the saturation density of ‘He, Kiirten and Ristig
obtained values of u =75K, 40K, and 27 K for H, D and T, respectively,
so that none of these atoms penetrate the surface (uncertainties of order
5-10 K exist due to uncertainties in the He—H pair potential). u is strongly
density dependent and in going over to *He surfaces with a molar volume
of 36.8 cm”/mol compared to 27.6 cm®/mol for ‘He, these values could
drop by more than a factor of two. In fact T on *He might be similar to *He
on "He with the possibility of dissolving into the bulk.

Another problem of significance for the stability of H| is the question of
“what happens to the H, produced by recombination?”’. If it accumulates
on the He surface it could seriously affect the environment of the H| gas.
Silvera (1984) has investigated this problem experimentally. While spray-
ing a cold molecular beam of H, on the surface of superfluid liquid *He, he
observed the formation of macroscopic clusters of H, within the bulk liquid
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“He. This provided evidence that H, penetrates the *He surface either in
monomolecular or clustered form. Kiirten and Ristig have also analyzed
this system and found u = —23 K for H, with lower values for D, and T,,
implying that all of these molecules penetrate into the bulk liquid as single
molecules.

4.1. THE SURFACE ADSORPTION POTENTIAL

An accurate calculation of the adsorption potential presented to a
hydrogen atom by a He surface is a formidable task. At large distances, z,
from the surface it is easily shown that the potential varies as z .
However, near the surface the calculation requires knowledge of the
surface density profile, the two-particle (He—He) distribution function and
the kinetic-energy density, none of which are precisely known. Calcu-
lations have been carried out by Mantz and Edwards (1979), Guyer and
Miller (1979) and De Simorie and Maraviglia (1979). Stwalley (1982) has
provided a scaling model which yields nice predictions for the isotopes. Of
the ab initio type calculations, only the Manz—-Edwards result, which gives
a lower bound for ¢, of 0.6 K, is reasonably close to the value which was
experimentally determined afterwards (see section 5). Mantz and Edwards
used an extension of the Feynman-Lekner variational principle. The
Hamiltonian for the N particle *He liquid with a He atom replaced by an H
atom at the surface was written down. The expectation value of the energy
was minimized and the resulting Euler-Lagrange equation could be
written in the form of a single-particle Schrodinger equation of the H atom
in the effective potential V,;; of the helium. The motion of the particle in
the plane (x, y) was described by free-particle momentum states, whereas
the distribution in the z direction was found from

B d’¢(2)
S g T Ve(D9(2) = £.0(2). (4.1)
Solutions of this equation give the bound states of hydrogen on ‘He, and
eigenvalues

=g, +hx’2m (4.2)

where the translational energy in the plane is included, x being a
two-dimensional wave vector. H was found to have a single bound state,
g, = —¢, with ¢,/k=0.63 K. Due to the larger masses, and thus smaller

zero-point energy, D and T had larger values of ¢,, as well as a very weakly
bound second state. The probability density, ¢°(z), and V(z) are shown
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in fig. 4.1. The peak of ¢*(z) is several A from the surface and the
distribution is quite broad, extending to ~20 A for H. Surface deformation
due to electric polarization effects which increase e, have been estimated
by Papoular et al. (1984). The effective potential for *He on “He is also
shown in fig. 4.1. By contrast to H, the *He resides right at the surface
(z = 0). This potential has the interesting property that the energy is lower
in the interior than in the vacuum so that atoms “desorb” into the bulk.

Stwalley (1982) has used a potential of the form —c/z>, cut-off at a
distance z, from the surface by an infinite repulsive wall and solved for the
bound states using a semi-classical solution. His model apparently has nice
predictive values for the isotopes (see table 5.1, with a comparison to
experiment).

T T T T 03
3He T a
(2)/ ° ks
P(2)/P,
R L 92(z)
H (&N
0.1
O I L
-5 0 10 20
T T T T b
H
Vetfl(z)
K)
20

Fig. 4.1. V,, for H on “He and ’He on ‘He. The upper graph shows the probability density for
H, D, T and *He as well as the surface profile of “He (after Mantz and Edwards 1979).

4.2. INELASTIC SURFACE COLLISION
In thermodynamic equilibrium of hydrogen in a chamber with liquid-

helium walls there is a rapid and continual exchange of atoms between bulk
(gas) states and surface states. In this section we examine some of the
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processes for establishing equilibrium. Let us first provide some numerical
estimates. In the low-density, high-temperature limit, o= Ay n X
exp(e,/kT). The thermal de Broglie wavelength A, =39.0A, and
o =5.7%10" atoms/cm’ for n=10'® atoms/cm’, ¢,/k=1.0K and T=
0.2 K. This is a seemingly small, but very important surface coverage.
Under these conditions, the atomic collision rate per unit surface area,
¢ =1inb, is 1.63x 10" atomscm 2s™" [0 = (8kT/mwm)''* = 6482 cm/s is
the average atomic velocity]. Alternatively, the surface coverage is given
by

o= ¢taas = %nl_)taas ’ (43)

where ¢, is the average adsorption time and « is the sticking probability per
collision. Using both expressions for o yields

t, =4, exp(e,/kT)] /v, . 4.4)

Evaluating for our standard conditions, we find £, =1 x 107 s, where we
have used the experimental value a, = 0.035(4) measured by Jochemsen et
al. (1981) using resonance techniques. They determined this from the ratio
of the time between wall collisions to the time between stickings. The
former was computed, the latter extracted from either relaxation time 7,
or the linewidth. For H on *He surfaces, they found «, = 0.016(5).

In all experiments carried out to date, the gas and the He surface are
close to being in thermodynamic equilibrium. Evidently, equilibrium is
rapidly established and requires only a few surface collisions. For a sample
cell with a typical wall-to-wall dimension of 1 cm, the equilibrium time is of
order or less than 1 ms. This assumes that there is a reasonable transfer of
energy per collision. Salonen et al. (1982) measured a fractional energy
loss per collision of a = 0.2(1), using ballistic pulses of H|. This experi-
ment used the planar heater and bolometer detector shown in fig. 4.2.
During a heat pulse of a few ps, gas atoms striking the heater pick up
energy. This group of atoms propagates towards the bolomoter, depositing
energy which is detected by monitoring the heating of the bolometer. From
the time-of-flight spectra, the energy transfer coefficient a could be
determined. In view of the small value of the sticking coefficient, this large
value of 0.2 is surprisingly large. Recently, Salonen et al. (1984) have
confirmed this result by a static measurement and find the temperature
dependence shown in fig. 4.3. In this experiment a thin-film carbon
bolometer is suspended in the gas and ohmically heated to temperatures
above the cell temperature. Introduction of H| gas cools the bolometer by
energy transport to the cooler walls. By monitoring the power required to
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Fig. 4.2. The cell used for studying ballistic heat transfer of H to He walls. All surfaces are
covered with He and the cell is filled with H}. H{ atoms traverse from the heater to the
bolometer (after Salonen et al. 1982).

maintain a constant temperature as a function of gas density, o was
determined. The important point to note in fig. 4.3 is that in this
temperature range « decreases with increasing temperature, rather than
increases. On theoretical grounds one expects a to go to zero as T— 0 K.

There are three types of surface collisions: elastic, inelastic nonsticking
and sticking collisions which are, of course, inelastic. In the following we
shall discuss some of the mechanisms for energy transfer. Until now we
have considered the surface to be flat and static with a uniform mass-
density profile normal to the surface (z). In order to accommodate
energy, the surface must have dynamical modes, and the height of the
surface, A(r), must be able to vary with position. Phonon excitations of
the bulk liquid helium are important for hlgher temperatures (T =1 K).
The intrinsic elementary excitations of the ‘He surface are ripplons
(Atkins 1957) which are related to film height fluctuations by

h(r) =~ 2 h, (4.5)
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Fig. 4.3. The energy transfer coefficient as a function of H{ density. T, is the bolometer
temperature and T, is the gas temperature (after Salonen et al. 1984).

where
h,=(hq/2pw,) *(ry+r_,). (4.6)

Here r; is a ripplon creation operator for wavevector ¢ and
w; = gq +(v/p,)q’, where y and p are the surface tension and the density
of the liquid, and in this case g represents the Van der Waals force per
unit mass exerted by the substrate on the helium. When an H atom
strikes the surface, the surface is distorted by dynamic or static creation
of ripplons. In the former case, an energy hw, is transferred. In the latter,
the surface is statically deformed (dimpled) in the vicinity of the H atom,;
the distortion moves with the atom, and the atom, along with its
distortion, is called a polaron. Kumar (1981) and Guyer et al. (1981,
1982) introduced the idea of a polaronic distortion, and it appeared to be
an important effect with a large effective mass for H and H-H coupling
via ripplons. This now is recognized as invalid, mainly due to an
unphysical choice of the H~ripplon coupling (Zimmerman 1982, Wilson
and Kumar 1983). The calculated effective mass of H is only a few
percent larger than the bare mass and the static surface distortion is
minor. This implies that two-dimensional free-particle states are a good
representation for translational motion.




Ch. 3, §4] SPIN-POLARIZED ATOMIC HYDROGEN 181
4.3. STICKING PROBABILITY

The sticking probability of H on *He has been calculated by Zimmerman
and Berlinsky (1983) and Kagan and Shlyapnikov (1983). Both articles
used essentially the same model; we shall describe Zimmerman and
Berlinsky’s results. They expanded the film thickness dependent H-He
interaction in ripplon coordinates and used time-dependent perturbation
theory to calculate the transition rate of free-atoms into bound surface
states. The dominant contribution arose from single-ripplon creation.
Normalizing to the incident flux of atoms gave the sticking probability as a
function of energy and angle of incidence. This was then averaged over the
angular coordinates and averaged with a Boltzmann distribution to yield
a,(T), which for low T varied as T''%. In order to obtain numerical results
with tractable integrals they modeled the Mantz—Edwards adsorption
potential with a Morse potential. The calculated result, shown in fig. 4.4, is
about 50% higher than the experimental value of 3.5 x 107>

A serious criticism of this calculation can be presented. The approxim-
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Fig. 4.4. Thermally averaged values of the sticking probability of H on *He as a function of

temperature (solid line). The dashed line is an approximation using a g-independent

coupling. The vertical lines represent experimental values. The circle, square and plus are

values found by varying e, with the circle representing the lowest value (0.89 K) (after
Zimmerman and Berlinsky 1983).
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ation of replacing the long-range (z~?) surface potential with a short-range
Morse potential was not investigated and does not appear to be good.
Brenig (1980) has shown that the matrix elements for the two potentials
have different ¢ dependencies which implies different temperature depen-
dencies.

4.4, KAPITZA THERMAL RESISTANCE AT THE GAS—LIQUID INTERFACE

Due to the release of recombination energy, D, = 4.6 €V, there is a large
source of internal heating in a gas of H{. The rate of heating (Q) increases
with density, since Q = VD (K @®p? + K®%’) where V is the volume and
the K'’s represent recombination-rate constants. For the gas to remain
cold, this heat must be transferred to the He film and from the film to the
cell (copper) which is connected to a thermal bath (refrigerator). If the
paths of thermal conduction are not well-designed, large thermal gadients
can develop in the system. In the following discussion the finite thermal
conductivity of the gas, the helium and the copper will be ignored, as
we shall concentrate on the Kapitza resistance, Ry. Ry exists at heat path
interfaces connecting materials in different phases or different materials.
This results in a temperature step, AT, at the interface. It is defined in
terms of the heat flow per unit time

Q=AT/Ry . 4.7)

Ry is inversely proportional to the contact area, A, and in general is
temperature dependent, with Ri' — 0 as T— 0 K. Due to the thermal step
there can be three temperatures the gas temperature, 7, the helium
temperature, Ty, and the cell wall temperature, T,,. The thermal steps can
be substantial, with (T — T,,)/ T =0.25 or greater, as the cell temperature
is lowered. In fact, this can be the most significant barrier for achieving
BEC in H| as either high densities or low temperatures are required, a
situation which creates a profound conflict. Unfortunately at this time the
gas-liquid Kapitza resistance is not well understood.

The helium—cell wall (or helium-solid) thermal resistance is much better
understood, or at least a great deal of experimental data exists. In this case
R, can be greatly reduced by increasing the interface area, using silver or
copper sinter. On the other hand, very little is known about the gas-liquid
R, at present and in order to design an experiment to achieve BEC, its
magnitude and temperature dependence must be known. It appears as if
increasing the surface area will be of little help since the surface recombi-
nation process is expected to be dominant, so that Q « A. The remaining
alternatives are to select a critical temperature for BEC at which Ry is
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not a serious problem, or find a strategy for reducing the heating. We
shall concentrate further discussion on the gas-liquid-Kapitza resistance.

The theoretical problem was first discussed by Castaing and Papoular
(1983) who used a semi-classical model and confined their attention to
nonsticking processes. Recently, Kagan et al. (1985) have made a fully
quantum-mechanical calculation, including the adsorption process which
turns out to be the dominant energy-transfer process at low temperature.
They calculate the energy flux J from the gas to the liquid:

[ dk  d’q #k,
@@’ 27)* m

X {n (TY(A + ny(Ty))(1+ N(Tw.))

— 1+ n(THn(TuIN(Twe)} 5 (4.8)

£k W(k7 q)

where

2
fq > ‘
te,—g — :
<2pqu 8(e, +e,— 5, —ho,)

Wi, 9= 27 <0l 22 Ik,)
(4.9)

Here 7, n, and N, are occupation numbers for ripplons, atoms in the bulk
and adsorbed phase, respectively. ¢, is the bulk kinetic energy and ¢, that
on the surface; U(Z) is the static adsorption potential and (0| represents a
bound state of H. Kagan et al. use a Morse potential with a long-
range z ° fall-off to model the Mantz-Edwards potential and from eqs.
(4.7) and (4.8) (with J = Q/A) find

Ry' =Ryl +Rg!, (4.10)

where Ry, is the contribution for sticking (adsorption) which is scaled to its
value at T, =1K

RKa(THe) = RKa(l)/THe ’ (4113)
and R is the term for inelastic scattering
RKS(THe) = RKs(l)/Til/e2 . (411b)

Amongst other quantities Rg' « n.
As a result we see that at low temperature the Kapitza conductance Ry '
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must be dominated by the sticking term, with the weaker temperature
dependence, even though the sticking probability is only of order 3 x 1072
at 100 mK (see fig. 4.4). We also note that this picture must be incomplete
as it predicts a monotonically increasing value of Ry (T}, ) with decreasing
temperature, whereas experiment indicates an increasing dependence in
the 300 mK region (see fig. 4.3). Boheim et al. (1982) have examined
sticking coefficients to second order in perturbation theory and find that
they can exhibit increasing (nonmonotonic) behavior with decreasing
incident energy for T >0 K.

In the same approximation Kagan et al. (1985) have also considered the
effect of higher surface coverages on R, in which ¢, is reduced in value,
going to zero at the critical density n_ for BEC (see section 9). They find
that the Kapitza resistance is still dominated by a term of the form R,,.
Below T, only the normal (noncondensate particles) of density n, can
adsorb (since the condensate particles are in the k = O state and behave like
a gas at T=0K) and an additional temperature dependence enters since
Ry x1/n, and n_ = (T/T.)*>.

It is useful to make some numerical estimates of the Kapitza resistance
and compare to experiment. For the adsorption process Kagan et al. find

Q/(AAT) = 5nkiT/4hk* . (4.12)

Here kj is Boltzmann’s constant, k* =4 X 10 cm ™' represents the squared
matrix element (see eq. 4.9), among other constants, and T is the gas
temperature. Evaluating for T=0.3K and n=10""cm®, we find Q/
(AAT)=1.68mWcm >K™'. To compare this to experiment, we note
from section 4.2 that Salonen et al. (1982) measured the energy loss per
collision with the surface, @ = 0.2 at T=0.3 K. We relate this to the heat
transport by

Q = ;n0Aa(T)AE = 1n(8kyTImm)' "Aa(T)(2k,AT) , 4.13a)
B B

where the first factor is the particle flux and A E is the energy transfer, from
kinetic theory. This can be rewritten as

Q/(AAT) = sn(8k3/mm) *a(T)T"? . (4.13b)

Evaluating for the same conditions used for eq. (4.12), we find Q/
(AAT) =11 mW cm 2K™'. This means thatat T = 0.3 K, forafixed Q/A,
the experimental temperature drop is 6.5 X smaller than the theoretical
prediction. More important, as already pointed out, the predicted temper-
ature dependence has a slope opposite to what is experimentally found so
that the discrepancy will become larger at lower temperatures.
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Kagan and Shlyapnikov (1983) point out that to achieve BEC, one may
take advantage of the fact that the sticking probability goes to zero for low
T. The idea is to reduce the heating by allowing the surface to get out of
thermal equilibrium so that o <o, for T<T, (see section 9 for a
discussion of o,,). In equilibrium, as the atoms on the surface recombine
they are replenished by atoms from the bulk, to maintain the adsorption
isotherm. At a sufficiently low temperature, due to the low sticking
probability and reduced flux (~jnvA) the surface coverage becomes
smaller than its equilibrium value and heating is reduced. This effect is
enhanced below T, since condensate atoms will not stick.

Unfortunately the estimate of the temperature at which the system
comes out of equilibrium is 7* =5 mK. The heating rates for a saturated
surface are far too high to cool a sample with =0, to 5SmK. One
experimental strategy might be to start at a temperature T < T* and slowly
fill the cell with hydrogen so that the cell is never submitted to a severe
thermal load. Even so, the experimental cooling powers available at these
low temperatures appear to be incompatible with the recombination power
that is dissipated and consequently this would be an extremely difficult
experiment.

4.5. THE HYPERFINE FREQUENCY SHIFT OF H

In section 3 we have introduced the single-atom hyperfine constant a (eq.
3.4) which, for a many-particle system of hydrogen atoms, can be
considered to be a constant since the average H-H separation is quite
large. On the other hand, when hydrogen is adsorbed on a He surface or in
a high-density buffer gas, the average H-He separation is small or the
collision frequency is high, giving rise to a change in a. This is usually
observed by measuring the zero-field shift in the frequency of the a to ¢
hyperfine transition of fig. 2.1. In appropriate units, this has the frequency
v={(a)/h, where ( ) represents an average over the paths or motion of
the atoms. This frequency can be measured with great precision and one
usually measures the fractional hyperfine shift (HFS), 4(a)/a(®)=
[{a(R)) — a(>)]/a(). The hyperfine interaction strength is proportional
to the density of electronic spin at the nucleus. Calculation of the HFS is
a formidable task which involves computing the electronic spin density at
the hydrogen nucleus, which will depend on the separation R between H
and He

P(R) = ($(R)| 2 5,,8(r, — ru) [W(R)) , (4.14)

where 7, is the position of electron i with spin s, and ¥(R) is the complete
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Fig. 4.5. The fractional hyperfine frequency shift calculated by Davison and Liew (1972) and
Ray (1975). The solid line is the average of the two (after Jochemsen and Berlinsky 1982).

wavefunction for the He—H system. At long-range, the mutual polarization
of the atoms causes a spreading of the electronic wavefunction and thus a
lower spin density at the nucleus, resulting in a negative frequency shift. At
short-range, the shift is positive resulting from two effects: deformation of
the orbitals due to the additional interaction of the He and distortion of the
wavefunction due to the Pauli exclusion principle. A detailed calculation
requires a determination of the wavefunction, Y(R), using extensive
multiconfigurational self-consistent field techniques. Results of calcu-
lations by Davison and Liew (1972) and Ray (1975) are shown in fig. 4.5,
from the article by Jochemsen and Berlinsky (1982), who have performed
quantum statistical averages of the HFS for a He buffer gas. From fig. 4.5
we see the general trend of the HFS is to be negative for large R and
positive for small R, very similar to a pair potential.

For H in a He buffer gas at room temperature, a positive HFS is found
since collisions favor the short range part of Aa. However, at liquid-helium
temperatures the interatomic potential is such that the atoms mainly
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sample the negative part of the HFS curve of fig. 4.5, and the shift is
negative. When adsorbed on He, the larger average separation also results
in a negative shift. Zero-field measurements of the HFS of H on “He and
*He as a function of temperature have been exploited to determine &,
(see the review by Hardy et al. 1982). The motionally averaged
frequency shift depends on the percentage of time that an atom spends on
the surface, which is proportional to o/n= A, exp(e,/kT), so that
(Aa(R)) x A, exp(e,/ kT). A measurement of { Aa(R)) enables extraction
of ¢,. In fig. 4.6 we show the HFS as measured by Morrow et al. (1981) as a
function of temperature. At high temperature the *He vapor pressure is
high and the pressure-shift dominates the HFS, whereas at low tempera-
ture as the pressure drops the H atoms populate the surface, and the
wall-shift becomes dominant. The experiment is described in greater detail
in the following section.

! 1 1 )

I 1 | 1
02 04 0.6 08 10

T (K

Fig. 4.6. The hyperfine shift versus temperature. The solid line is a fit to the data, the dashed
line shows the gas-phase pressure shift contribution (after Morrow et al. 1981).
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5. Experimental developments

In a long review such as this it is difficult to treat theory and experiment
separately. We have attempted throughout to support and amplify
theoretical discussions with experimental results. In this section we shall
concentrate on experiment, referring to theory in previous and sub-
sequent sections where necessary. We shall cover the principal develop-
ments of this field rather than give a complete coverage of all experiments
performed. The handling of material will be in an essentially historical
order, focusing on efforts to understand decay mechanisms and achieve
high densities.

The earliest published suggestion that H| might be an interesting system
to produce and study was by Hecht (1959), with subsequent theoretical
articles on the subject by Etters (1973) and Stwalley and Nosanow (1976),
who were unaware of Hecht’s work. Experimental work was started in the
early 70’s at the University of Amsterdam. Walraven et al. (1978)
attempted to stabilize spin-polarized hydrogen (H7) on a cold surface,
using atomic-beam techniques. This was unsuccessful due to rapid spin-
relaxation and recombination on the surface. At MIT, Crampton et al.
(1979) observed zero-field hyperfine transitions of H in contact with
H,-walls at liquid-helium temperatures; Hardy et al. (1979) at UBC
studied H in the presence of H,-covered walls and He vapor using low-field
NMR; Silvera and Walraven (1979) used an atomic beam to show that H
could easily be transported through teflon tubes to a region of H,-covered
liquid-helium cooled walls, and that the H thermalized with the walls. The
conclusion drawn from the three latter experiments was that a reasonable
flux (or density ~ 10" to 10" cm ™) of H atoms could be cooled to low
temperatures in a steady-state flow experiment. However, when the H
discharges were turned off the H density rapidly disappeared, indicating a
short lifetime in the presence of H,-walls at low temperature.

Spin-polarized hydrogen was first stabilized in a long-lived state in 1979
(Silvera and Walraven 1980a) and D| was stabilized shortly thereafter
(Silvera and Walraven 1980b). Low-density gases of H| were found to
have unmeasureably long lifetimes (on a scale of hours), whereas D] was
limited to minutes. Limitations of the lifetime and density of D| were
found to be due to surface recombination, and the first measurement of the
adsorption energy on ‘He was made in the latter paper. The adsorption
energy of H| on ‘He was subsequently measured (Morrow et al. 1981,
Matthey et al. 1981). Matthey et al. also showed that the surface
recombination rate constant depended inversely on the square of the
magnetic field. The next big step was the demonstration by Cline et al.
(1981) of nuclear spin polarization in H|, resulting in significantly lower
recombination rates and opening the way to higher densities. A series of
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interesting measurements on the nuclear spin relaxation rate ensued. Until
this point, densities of order 3 X 10"/cm® had been achieved. Using
compression techniques Sprik et al. (1983, 1985) and Hess et al. (1983,
1984) were able to increase the density by an order of magnitude; a new
density limitation was encountered: three-body recombination. Recently,
in a research unrelated to decay of the density, Johnson et al. (1984) have
observed nuclear spin-waves in a low-density gas of H{{.

5.1. StaBiLizaTION oF H|

In order to stabilize and measure atomic hydrogen several essential
requirements have to be met:

(1) atoms must be made (by dissociating H,),

(2) the electron spins must be polarized so that atoms interact via the
’3 ¥ potential,

(3) the spin polarization must be maintained,

(4) the atomic hydrogen must be confined to a cell, and the atomic
density of the cell walls must be kept low to suppress wall-
recombination, and

(5) a detector of H must be available to establish its existence.

In the following, we discuss these various requirements and show in

detail how they were implemented in the apparatus of Silvera and
Walraven (1980a) shown in figs. 5.1 and 5.2.

5.1.1. Dissociation of H,

A room temperature microwave discharge was used to dissociate H,. This
is described in detail by Walraven and Silvera (1982). (rf fields can also be
used.) The high-frequency electromagnetic field accelerates free electrons
in a gas of H, and inelastic collisions create neutral hydrogen atoms
through a multi-step process. This discharge can take place at room or
lower temperatures. Cline et al. (1980a, b) used a liquid-nitrogen tempera-
ture rf discharge. The higher temperature source requires in the order of
5-20 W of electromagnetic power to sustain a discharge. In a good
discharge, 90-95% of the gas is atomic. Hardy et al. (1980) used a helium
temperature low average power pulsed discharge to produce H.

5.1.2. Polarization

At this point we discuss polarization of the samples with the aid of figs. 5.1
and 5.2. Atoms from the discharge flow up a tefion lined tube to a
low-temperature sample cell in the center of a solenoidal magnetic field.
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Fig. 5.1. The apparatus used to stabilize H| and D|. (IVC and OVC: inner and outer
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the cell and the copper braid connection are not shown.
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Fig. 5.2. A more detailed view of the cryostat of Silvera and Walraven. The cell (HSC) and

HEVAC were cooled with *He evaporation refrigeration which could achieve no load

temperatures of about 250 mK. The cell was also provided with sintered copper for cooling.

This was later removed as it apparently was not necessary, and a well-defined surface area was
desired.

To enter the field the atoms must pass through a field gradient and they
undergo a force, —V( g, - B). The electron spin-up atoms are repelled by
the gradient and do not enter the cell, whereas the spin-down atoms are
attracted into the cell. Spin-up atoms on the wall can either recombine or
relax to the spin-down state and then enter the cell.

5.1.3. Sustenance of polarization

In order to maintain the electron spins polarized, the sample must be at
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low temperature and in a high magnetic field so that the spin-down state is
thermally favored. As an example, in equilibrium, the ratio of down-spins
to up-spins is n}/nT = exp(g.usB/kT) =2.7 x 10" when we evaluate for
B=10T, T=03K.

5.1.4. Confinement

5.1.4.1. Magnetic compression

The cell in fig. 5.1 is open at the bottom, and the atoms are confined to the
cell by the magnetic gradient. It is useful to analyze this in some detail. For
a simple solenoidal magnet, the field can be approximated by

2 2
B,(r)= Bo<1 - 55 + _2p 2) , B, (r)=zpB,/z},
0

B,=0. (5.1)

Here, z is the axial direction, z, = 51 mm for the magnet of fig. 5.1, p is the
transverse coordinate and B, = 10 T is the field at r = 0. In what follows we
neglect B, for simplicity. Walraven and Silvera (1980) analyzed the spatial
density dependence of the gas. In the low-density high-temperature limit,
neglecting interactions, we can use eq. (1.9) with N,=0 and g =1 and
approximate g,,,(z) by the first term in the summation,

nh= At_h3g3/2(z)’ 8:2(2) =z =exp[(p + ugB)/KT], (5.2a)
or
n=exp[(p + ugB)/ kTN, , (5.2b)

with g = 1. Since the chemical potential © must be uniform, we evaluate it
at B=0 to find n(B=0)=n, or

n(B)=nyexp(ugB/kT) . (5.2¢)

We note from eq. (2.8) that since the gas is electron spin-polarized the
density and magnetization M = |M| are related by a constant

Mzgel‘LB%(na+nb)+gnl“’n%(na—nb)=#’Bn(B) . (53)

Here n, is the local atomic density in hyperfine state h and we take
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n,=n, = 3n. The nuclear contribution can be ignored, as the splitting
(E,— E,) k=55mK at B=10T. The axial and radial density distrib-
ution, n(z) and n(p), can be evaluated for the field of eq. (5.1)

n(z) = n(B,) exp[— g Bo(2/2,)1kT], (5.4a)

n(p) = n(B,) exp[+ s B,(p/2,)12kT], (5.4b)
where

n(By) = nyexp(ugBy/kT) . (5.4c)

Thus, field gradients give rise to enormous density gradients or magneti-
zation gradients with a Gaussian axial shape of half-width A4z =
2,(kT/ugB,)'">. At low temperatures, H| will be highly localized to the
center of the field and pressed against the walls of a tubular confinement
cell. As a numerical example, let us assume that we have a density of
10"/cm’ in zero field: then in a field of 10T at 300 mK, n(B,)=
5% 10"/cm’. A gas of H| in a low-field region will be compressed into a
high-field region. It is useful to introduce the compression ratio

cu(By — B)=n(B,)/n(B) = exp[ ug(B, — B) /kT]. (5.5)

The density n(B,), eq. (5.4c), is the maximum or saturation density to
which a cell will fill, given a zero-field density, n,.

Another consequence of eq. (5.4c) is the following: if a cell is filled with
a central density n(B,) and the zero-field density is reduced to zero, n must
also go to zero. The important question here is ““What is the time scale for
this thermal escape of out of the cell?”’. To analyze this, let us first consider
B =0 and assume that a cell with volume V is connected to a (filling) tube
of cross section A with a Clausing flow conductance factor K. From kinetic
theory, assuming free molecular flow, the flow of atoms out of the end of
the tube is found to be dN/dt = ;Knv A, where n = N/V is the density in
the volume V and v is the average atomic velocity. This gives an
exponential decay of N with time constant

7., =4VIKv A . (5.6)
If we now turn the field on, the density at the tube-end will be reduced by
the compression n(B) = n(B,)/c,, and the atoms will be compressed into

an effective volume V= N/n(B,). The time constant becomes

7. =cpy(By— B)AV, /KA . (5.7)
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Because of the enormous accessible values of ¢,,, the gas in the cell can
essentially be permanently trapped by the field, similar to the trapping of
the atmosphere by the earth’s gravitational field. As an example assume
that we have a system for which 7., =0.01s for B— B, =0. For a field
difference B, — B=10T, c,(10)=exp(6.7/T). For T=1K we find
7., =18.2's whereas for T=0.1K 7., =1.25% 10" s.

5.1.4.2. Wall confinement, wall coverage, vapor compression and
thermalization

From eq. (1.7) we see that in equilibrium the atoms are occupying both
surface and volume states. Clearly if €,/ kT > 1, the atoms reside predom-
inantly on the surface. Since the cell must be at low temperature to
maintain the polarization, ¢,/k must be of order 1K or smaller to have
gas-phase densities sufficiently high to detect and study. Furthermore if
g,/ k> T at low temperature, the surface density becomes very large, and
the atoms rapidly recombine due to a term of the form of eq. (1.4). Silvera
and Walraven (1980a) found that a liquid-helium film could be used to
cover the cell walls to inhibit the build-up of a surface density and suppress
recombination. Later, ¢, was measured and found to have a value of ~1 K
for *He.

A second method of suppressing wall recombination is to use magnetic
confinement. From eq. (5.4a) we see that by using a magnetic-field
gradient, the density #, and thus o, can be reduced exponentially to zero in
one direction, so that there need be no physical walls which catalyze
recombination in that direction. Unfortunately, Maxwell’s equations do
not allow a static-field maximum in free space; magnetic fields always have
saddle points wherever one component has a maximum. Thus we see, for
example, from eq. (5.4b) that the density increases in the radial direction.
In this case the best we can do is to construct an open ended cylindrical
sample cell and use magnetic confinement to keep the atoms away from
surfaces normal to the z direction, and with a radius p, < z, so that the wall
density is of the same order as the central density.

Using this background let us now consider the experimental geometry
shown in fig. 5.1 in greater detail. Atoms flow up the warm (7 =20 K)
teflon lined tube towards the cell. Teflon has a relatively low adsorption
energy for hydrogen and the transmission of a 50 cm long tube of 5 mm
diameter at room temperature is of order 0.5 for densities ~10'° cm”’.
Before the hydrogen enters the cell it must be cooled to liquid-helium
temperatures to prevent thermal loading of the refrigerator. This happens
in the accommodator (AC) (see fig. 5.2) by collisions with walls at
T =4-8 K. At these temperatures teflon is no longer a useful wall material
so that both this and the metallic copper walls of the AC would yield very
rapid recombination. Initially, the H that flows into the AC recombines;
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the resultant H, then coats the cold teflon and copper walls. In the
hierarchy of low adsorption energy walls, H, is second only to helium with
an adsorption energy of 39.79(32) K (Crampton et al. 1982). The atoms
thermalize on the H, walls of the AC within several wall collisions, passing
up towards the cell.

The cell walls are covered with superfluid “He which flows to cover all
surfaces. Due to the “fountain pressure” the superfluid film flows toward
warmer regions. This has both positive and negative consequences. Flow
stabilizes the film thickness against local “‘burn off” or thinning out due to
recombination heating. However, a serious cryogenic problem exists as the
film is driven towards the warmer accommodator. At a temperature of
about 0.9 K the film evaporates and the vapor fluxes back to the cell where
it condenses out, liberating its heat of condensation. This large heat load
(several mW) due to “heat piping” drives the temperature of the cell
towards that of the AC. Silvera and Walraven resolved this problem by
introducing a second refrigeration point, called HEVAC (shown in more
detail in fig. 5.2), between the cell and the AC. The HEVAC has a
liquid-helium reservoir and is independently cooled to a temperature of
500-650 mK. At these temperatures the equilibrium He vapor pressure is
very low. The film now runs between the HEVAC and the AC and the
former acts as a condenser so that the vapor does not enter and condense in
the cell. The cell temperature can then be varied more or less indepen-
dently.

The HEVAC serves a very interesting second function. It is actually a
miniature vapor pump for H| from Wthh it derives its name HEVAC
(HEllum VApor Compresser). When the *He vaporizes, a dense cloud of

“He atoms flows in the direction of the cell. Collisions between ‘He and H
effectively transfer momentum upward to the four times lighter H and
compress it into the cell. Thus, both HEVAC and magnetic field confine
the atoms to the cell and the time constant for thermal leakage, eq. (5.7),
becomes

7., =4Vl KA, (5.8)

where c,, is the HEVAC compression (measured to be of order 50). The
He—H mean free path is estimated to be about 0.2 mm based on a “He
vapor den51ty of =2 x10"%/cm’. From the known recombination rate
constant, K™, it is easily seen that recombination of H in the HEVAC is
negligible. Although the compression function of the HEVAC is not
necessary for stabilization, it improves the confinement and was partlcu-
larly useful in showing that H was long-lived, even in zero field, in the
first stabilization experiment.

Returning to the cell-loading procedure, the atoms pass from the AC
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into the HEVAC region. It is in this region that they begin to be sorted out
into up- and down-spin. This is a critical region for loading. The atoms
must pass through a temperature gradient from 4 K to 0.9 K in which the
walls are H,, but not He covered. H condenses on H, walls at 1 K and
rapidly recombines. If this “danger” zone is too long, the transmission to
the cell will approach zero. A number of experimental groups have had
sustained difficulties with loading of cells and we suspect that the problem
resided in this region. The length of this region can be analyzed (Tommila
et al. 1984b, Silvera and Godfried 1984) and depends critically on the
temperature of the HEVAC since the film burns off at about 0.9 K, i.e., for
T yevac = 0.9 K the film length is zero. The HEVAC should be cooled with
a large cooling power refrigerator so that its temperature remains of order
0.5t0 0.6K.

In the experimental system of Silvera and Walraven (fig. 5.1) bottom-
loading of H was used, which limits the length of the filling tube. The
recombination loss in the tube is not nearly as important as the losses
encountered in the 4-1 K region. Accordingly, top-loading has been used
successfully by a number of groups. In later experiments at Amsterdam,
Sprik et al. (1983) found that when bulk quantities of ‘He were intro-
duced into the cell, excessive heating due to He film-vapor coupling
between the cell and the HEVAC limited the temperature to which the
cell could be cooled. It was suspected that these problems could have
been avoided with a top-loading geometry which apparently is better
suited for experiments which use large quantities of helium. Later in this
section various other experimental cells will be encountered (figs. 5.7,
5.10a, 5.18 and 5.23).

5.1.5. Detection of H|

5.1.5.1. Bolometric detection

Once the hydrogen is in the cell it has a very long lifetime. In the first
experiment, densities conservatively estimated at 1.8 x 10'*/cm’® were
stabilized for up to 9 min with no detectable decay of density.

In order to detect the H|, Silvera and Walraven used one of two special
bolometers situated in the cell (fig. 5.2). The bolometer was a small carbon
chip (area about 2 X 1 mm?) cut from a Speer resistor. It was suspended in
the cell by fine copper wires which serve both as electrical leads and as a
path which allows the *He film to cover the surface. If a sufficiently large
electric current passed through the element, the *He would evaporate
faster than it could be replenished by flow along the wires. When the
surface was bare of ‘He, the resistance dropped slightly, as seen in fig. 5.3.
If H| was in the cell when the ‘He was desorbed the H| condensed on the
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Fig. 5.3. The current—voltage characteristic of a bolometer in an empty cell, ‘He-coated cell

and a cell with “He and H. For this zero-field trace, H was continually running into the cell

giving rise to hysteresis in the /-V curve. On reducing the current, the surface remains bare of
He due to continued recombination heating (after Silvera and Walraven 1980a).

surface and recombined with a time constant 7 =4V/v A, where V is the
cell volume, A the bolometer surface-area, and v the average atomic
velocity. The recombination energy heated the bolometer and its resis-
tance dropped sharply. The temperature rise was a measure for the
number of atoms in the cell. The bolometer was extremely sensitive and
could detect about 10°-10° atoms. After the atoms recombined on its
surface the molecules desorb in highly excited vibrational-rotational states
(see section 6). Within a few wall-collisions in the cell they relax to the
ground state and penetrate through the *He film to the underlying wall of
the cell. Using an ohmic heater, it was found that the temperature rise of
the cell as measured with a carbon resistance thermometer (Speer)
provided a signal linear with the number of recombining atoms (for low
density), whereas the more sensitive bolometer was highly nonlinear. The
system was easily calibrated with an electrical heat pulse of known energy
to determine the number of atoms in the cell absolutely.

The original apparatus, fig. 5.2, used *He one-shot evaporation refriger-
ation. This puts a severe limit on the running time and the temperature;
dilution refrigerators are much better suited for this type of experimen-
tation, and are now exclusively used by all workers in the field. In
subsequent experiments, densities of H| greater than 10'®/cm” were soon
achieved (Silvera and Walraven 1980c, Walraven et al. 1980, Cline et al.
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1980a,b). Hardy et al. (1980a,b) studied very low density H on “He
surfaces in zero magnetic field using resonance techniques. In all of these
studies H| was found to behave as a gas in thermodynamic equilibrium,
slowly decaying away to the molecular state. Convincing evidence that H|
was a low-temperature gas was presented by Walraven et al. (1980). They
showed that at low density the saturation density was controlled by the
magnetic field as expected for a gas, eq. (5.2), and that the H| was
magnetically confined by studying the decay time for thermal escape, eq.
(5.7) (see fig. 5.4). In this and similar experiments by Cline et al. (1980b)
at higher densities, disturbing and, at that time, unexplained deviations
which we now know to be due to recombination, were observed.
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Fig. 5.4. (a) Data showing the loading of an HSC to a saturation density under conditions of

constant loading flux, field and temperature. (b) The temporal decay of the density of

H| for two field—temperature conditions, demonstrating axial magnetic confinement (after
Walraven et al. 1980).

5.1.5.2. Nondestructive detection
Although the bolometer is a very sensitive detector that can be used for
measuring equilibrium properties of the gas, a measurement results in the
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destruction of the sample. A nondestructive detector, the capacitive
pressure gauge shown in fig. 5.5 was introduced by Matthey et al. (1981).
A thin gold-coated Kapton membrane (10 wm) is edge-epoxied to the inner
roof of the cell with a gap of order 25 um, forming a capacitor. The H|
pressure deforms the membrane, changing the capacitance. The minimum
detectable pressure is about 107® Torr. Since for low density the ideal gas
law p = nkT is obeyed, the density is easily determined. In fig. 5.5b a
filling and decay sequence as measured with such a pressure gauge is
shown. Other nondestructive detection methods such as NMR and ESR
will be discussed later in this section.
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Fig. 5.5. (a) A pressure gauge built into a hydrogen stabilization cell. The pressure distorts a

thin Kapton membrane which serves as one plate of a capacitor. The reference side of the

gauge is pumped by a sorption pump (crosshatched area). (b) The signal from the pressure

gauge during a filling (A-B) and decay (B-D) sequence. C-D represents a fit to the data

points (hidden by the fit curve). At D the sample is destroyed with a trigger bolometer (after
Matthey et al. 1981).
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5.2. THE RATE EQUATIONS
5.2.1. Effective rate constants

One of the most useful and powerful techniques for studying H| and D{
has been to monitor the rate at which the sample destroys itself, either by
recombination, relaxation between the hyperfine states, or by thermal
escape out of an open structured cell. All of this can be described by rate
equations for the decay or growth of the densities of atoms in the various
hyperfine states.

Simple forms of the decay equations were given in the introduction, eqgs.
(1.3)-(1.5). Before writing down the rate equations for the hyperfine
states it is useful to discuss first effective rate constants and some
approximations. We shall use a hypothetical model in which N* and N*
atoms populate the surface and bulk states, respectively, and decay by a
third-order recombination process with rate constants K° and K". Then the
time rate of change of the total number of atoms N is

N=N'"+N°=Vi+ Ac +Van + Ac . (5.9)

We shall first write down an extended set of rate equations which involves
population changes due to both recombination and redistribution between
surface and volume states

N'=-K'Va’— R, Vn+R,,0A,
N'=-KAo’+ R, Vn —R,,0A . (5.10)

Here R, and R, are the rates at which atoms go from bulk to surface states
and vice versa. Since the time in which the surface and bulk come into
thermodynamic equilibrium is much shorter than the recombination time,
the last two terms in (5.10) sum to zero, and » and ¢ are the equilibrium
values (to which we assign the same symbols). We also note that in almost
all circumstances N* > N° (for A/V=10cm ™", n =10"%cm’, o = 10"/ cm?,
we find N°/N" =107?) so that N = Vii + Vn. For the present discussion of
the rate equations, we use V= A =0 (a fixed sample volume and surface
area). The explicit time dependence of A and V is important for the
compression experiments to be discussed in section 5.12. From this, and
eqgs. (5.9) and (5.10), we find

A
n=—-K'n’— % K'o*. (5.11)
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Finally, since by assumption thermodynamic equilibrium exists, we can use
the adsorption isotherm, eq. (1.7), to write

n=-K""n’, (5.12)
with
eff __ v é (g)3 s
K=K+ . K
v A 3 s
=K"+ % Ay, exp(3e,/kTYK® (5.13)

the latter expression being valid in the low-density, high-temperature limit.
5.2.2. Notation for rate constants

A number of notations have been used in the literature to describe various
rate constants. Here we would like to introduce a consistent set of symbols
which have the virtue of presenting explicit information about the process.
The two principle decay mechanisms are recombination and relaxation,
denoted by symbols K and G, respectively; volume or surface processes are
denoted by superscripts v and s, i.e. K” or K°. The order of the process is
the number of subscripts, which also give the initial hyperfine states of the
atoms participating in the process. Thus K, is a third-order surface
process involving atoms in hyperfine states a, b and b. Clearly this notation
is more useful and avoids the ambiguity associated with some existing
notations. For example, third-order surface recombination has been
designated by the letter L, K 3", K> etc., none of which distinguish
between processes such as K;,,, K, and K;,,, etc. For electronic
relaxation in equilibrium we have G,. = G, exp(— E,,/kT) with a similar
relation for G_,. The effective number of atoms lost from a given hyperfine
state by a given process is explicitly included in the equations; the rate
constants are all defined to be positive quantities.

5.2.3. General equations

The general rate equations for a gas of hydrogen are quite complex with a
large number of variables. The most important processes which can occur
are relaxation between hyperfine states, recombination to H, via processes
of various orders, fluxing of atoms out of the system by thermal escape,
and into the system from an H source. These processes can occur in the
volume or on the surface and in principle both the surface area and the
volume can be time dependent. For clarity we shall consider a simplified
case. First of all we take A =V =0. A second useful and experimentally
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achievable approximation is the high magnetic field, low-temperature limit
so that mainly the a and b states are populated. In the following, rate
equations are given in a few approximations followed by a discussion of the
rate constants. In the remainder of this section a number of important
cases that have been experimentally realized are treated.

We shall now write down the rate equations for the hyperfine states a, b,
¢, and d of fig. 2.1 for the H atom. We use a shorthand in which n, = q,
n,=b,n=2=L n,, etc., and assume that in general n, + n,>n_+n,. We
treat two important cases:

(i) ¢=d =0, low-density, high-field limit:

ia=—2K"a* — Kab — GN(a + b)(a — b) — al7,,+ ¢,/V, (5.14a)
b=—K:ab+ G (a+ b)a—b)—bit + ¢,V . (5.14b)

(ii) Lower B/T ratio with b > a> c> d, ignoring filling and thermal
escape (¢,/V, n,/7.):

d=—Kab — K ab® — G (a + b)(a — b) + G§'(bd — ac) ,

(5.15a)
b=-Kab — Kbc — Kbd — (2 + €)Ki b® — Konab’
— K b+ Gl (a + b)(a—b) — Gii(b + c)b
+ G(b + c)c — GZ(bd — ac), (5.15b)
é=—-Kilbe+ KN b — KX bc
—G (b + c)c + G(b + )b + G (bd — ac) ,
d=—-K:bd — G{'(bd — ac) . (5.15¢)

Summing (5.15a)-(5.15¢) yields
A=—2K"ab - 2K bc — 2K:bd - 2K b® — 2K b’c — 2K &y ab”
(5.15d)

In (i) and (i), KI, K;?_, etc., are two-body recombination rate

constants occurring principally on the surface. The bulk contribution is

important only at high temperature, where He atoms in the vapor phase

can play the role of the third body. G is the two-body (intrinsic) magnetic

dipole-dipole nuclear relaxation rate constant, the relaxation occurring
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both on the surface and in the bulk; G and G are electronic relaxation
terms with G / G5 = exp(— Zp,BB/kT)

In our example, we assume G5 = Ger which is correct for T > 50 mK.
Gy, represents the spin-exchange rate for a, c— b, d, all other rates being
suppressed by high fields (see section 6). This tends to maintain a/b = d/c.
K, KT and K. are three-body recombination rate constants contain-
ing contributions from both the bulk and the surface. For each bbb
three-body event, a fraction £ = 0.91 (Verhaar 1985) yields a molecule and
an atom in the c-state, and a fraction 1 — ¢ yields a molecule and an atom in
the b-state. Here ¢ is assumed to be the same for the surface and volume
processes. For K t and Kgf | a prefactor of the form (2 + ¢) does not
appear since in high fields the reaction leads predominantly to a molecule
and a b-atom in the final state (see section 6). ¢, are the filling fluxes and
n,/7,, is the rate of thermal escape which can be ignored for sufficiently
high B/T.

We shall illustrate the use of these equations with some examples, first
for case (i).

5.2.3.1. Thermal escape
If the density is sufficiently low and the flux is set to zero then the
thermal-escape term dominates so that ri, = n,/7,, and the sample decays

exponentially with time constant 7, as demonstrated in fig. 5.4b.

5.2.3.2. Decay of H|

Assume that in addition to the intrinsic relaxation in eq. (5.14) there is
impurity induced relaxation so that we must add terms — G:f(a-b)and
+ G (a — b) to egs. (5.14a) and (5.14b), respectively (Sprik et al. 1982,
Statt et al. 1985). If this term is very large, then the hyperfine states aand b
remain in thermal equilibrium for all densities. Adding eqs. (5.14a) and
(5.14b) yields

h=—K"" + (¢, + ¢,)/V, ' (5.16)
with
eff (Keff + Keff

where we ignore thermal escape and have also assumed kT > (E, — E,) so
that @ = b = 1n. This corresponds to the decay shown in fig. 5.5b.

5.2.3.3. Decay of double-polarized hydrogen H|{
We now ignore the flux and thermal escape in eq. (5.14a). Then, if the
relaxation rate Gp is very small, the occupations of the a-b states can
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come out of equilibrium. Since a—b or a-a collisions will deplete the a-state
population preferentially over the b-state population, due to the action of
the terms involving K¢ and K:If (Kt =0), in time the sample becomes
polarized with b > a (see section 5 6 for more details, including experimen-
tal verification). By studying the decay equations, it can be shown that the
a/b ratio approaches a limit value. Asymptotically, (d/d¢)(a/b)— 0 for
t— o, then

a Geff G::)f
b Ko Geff Ker o (5.17a)
ab ab
with
_2K:ffG:ff
22 pr=-2G D, (5.17b)

= e off
Kab - Gab

where the last approximation is allowed because K¢ > G, The ratio a/b
does not go to a limit value but is density dependent if a first- or third-order
term is present in eq. (5.14).

Finally, in case (ii), if we exclude three-body processes, with the c-level
partially populated, but the a- and d-levels weakly populated due to
preferential recombination and spin-exchange, we find a limit value for the
al/b and c/b ratios:

eff eff
a G,y G
b ke . off = reff ® (5.18a)
b ff Ga‘ff Gb? Kalf)r
eff
4 Gbc
b K1 gefte (5.18b)
. be cb
- K G KWGi _
b=- ( eff G;{’f GE? + K[e,? + ng> (518C)

5.3. STABILIZATION OF D)

To date the only successful attempt to accumulate a measurable density of
D} in a cell is that of Silvera and Walraven (1980b); Mayer and Seidel
(1985) have studied D in low fields but were unable to build up a
measurable density.

The study of D] by Silvera and Walraven took place shortly after H|
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was stabilized. The most surprising aspect was that only densities of order
10"“/cm® could be built up and that the sample decayed very rapidly, in
order of minutes rather than hours. Before this, no serious limitations had
been observed for H{ densities. The decay of the density, measured using
bolometric techniques, was found to fit a second-order rate equation of the
form of eq. (5.16). From the determination of K ' values of ¢,/k=
2.6(4)K and K*VT=5.7x10""ecm*> K™""?s™" were determined for B =
8T, as will be described in the next two sections. The interpretation of
the second-order decay process of the bulk density was as follows: atoms
recombine on the surface by a second-order process and in order to
maintain equilibrium, atoms from the bulk replace atoms on the surface.
Thus, an equation of the form eq. (5.16) was applicable.

Clearly the main reason for the rapid decay of D|, was the large value of
g,- At T =370 mK the exponential factor in K ! exp(2¢,/kT)=1.3 X 10°,
compared to a value of 222 for H with ¢, =1 K. This substantially larger
surface coverage results in faster decay. Other differences between D|
and H| might arise due to different hyperfine state spin mixtures. Using
current techniques it is not too hopeful that densities required to observe
effects of quantum degeneracy in D} will be achieved.

5.4. MEASUREMENT OF THE SURFACE ADSORPTION ENERGY

There are a few experimental techniques that have been used for
determining ¢,. Silvera and Walraven (1980b) first introduced the decay-
of-density technique in a study of D|. They found that after filling a cell,
the gas density n decayed as a second-order process, i = — K “'n? (see eq.
5.16), where K" = A% (A/V) exp(2¢,/kT)K". Here A and V are the cell
area and volume, and K® is the intrinsic surface recombination rate. By
measuring K°" at a series of temperatures, ¢, was determined from a least
squares fit of In(K,V'T) versus 1/T, in which ¢, is half the slope of the
straight line fitted to the data. In this case, K* is assumed to have a
temperature dependence of VT, which follows from simple kinetic
arguments concerning the cross section. This yields a value of g,/k =
2.6(4) K. The originally published value of £,/k =2.5K by Silvera and
Walraven was based on a temperature-independent value of K* and was
revised to 2.6 K by Matthey et al. (1981).

There have been several determinations of ¢, for H on “He surfaces. In a
technique different from that used for D|, Morrow et al. (1981) measured
the temperature dependence of the shift of the hyperfine frequency
Aw = A A, (A/V) exp(e,/kT) where A is the frequency shift for an atom
on the surface relative to that of an isolated atom. A fit of In(VTAw)
versus 1/T yields e, as shown in fig. 5.6. Morrow et al. also used the
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Fig. 5.6. The hyperfine frequency shift of H in contact with *He walls in zero field, plotted
such that the slope is ¢, (after Morrow et al. 1981).

decay-of-density technique to determine ¢, for H on “He, in zero field,
whereas Matthey et al. (1981) used this technique in high field. (Measured
values of ¢, are given in table 5.1.) ¢, has also been determined from the
decay of double-polarized hydrogen. For this system an effective nuclear
relaxation process controls the decay rate and the data are fit to eq. (5.17).
This was done by Cline et al. (1981), Sprik et al. (1982), Yurke et al.
(1983), Hess et al. (1983) and Statt (1984). These results are unreliable in
view of an interpretation in terms of third-order recombination as pointed
out by Hess et al. (1984) (see section 5.8). Reynolds et al. (1985) have
determined ¢, by directly measuring o and n using ESR signals from
surface and bulk atoms. There is large scatter in values of ¢, determined at
different laboratories. Recently, Godfried et al. (1985) have performed a
careful study to make a more definitive determination of ¢,, seeking to
minimize systematic errors. Efforts were made to maintain a well-charac-
terized polarization of the a- and b-states and the temperature of the gas
was measured. A warming of the gas with respect to the cell-wall
temperature at lower temperatures due to recombination was found to give
a systematic decrease of the determined value of ¢,. Their corrected value
for H| . on *He is &, =0.96(2) K. Thus the three most recent measure-
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Table 5.1

Adsorption energies and two-body recombination rate constants. The

theoretical values of ¢, are from Stwalley (1982). When calculating a

value of K one should use the value of ¢, and K, determined in the
same measurement to minimize problems with systematic errors.

System Theory Experiment Ref.
Ea sa KST—IIZBZ
(K) (K) (em*K'"*T*s7h)
H| on *He 0.85 0.89(7) 2.6(8)x 1077 (1]
1.15(5) [2]
1.01(6) 5.4(4)x107* [3]
0.99(2) [4]
1.06(4) 41 x107° [5]
1.00(5) [6]
0.96(2) 5.9(5)x107° 71
1.10(2) 5.7(8)x107* (8}
0.89(6) 9]
D on ‘He 22 2.6(4) 37 x107° [10]
T on ‘He 3.2 - -
H on *He-'He 0.36 0.343) 90 x107* [11]
H on *He 0.36 0.42(5) - [12]
D on *He 1.2 - -
T on *He 1.9 - -
References:
[1] Matthey et al. (1981). [7] Godfried et al. (1985).
[2] Morrow et al. (1981). [8] Statt (1984).
[3] Cline et al. (1981). [9] Sprik et al. (1982).
[4] Hess et al. (1984). {10] Silvera and Walraven (1980b).
[5] Yurke et al. (1983). [11] van Yperen et al. (1981).

[6] Reynolds et al. (1985).  [12] Jochemsen et al. (1981).

ments, using somewhat different techniques (Hess et al. 1984, Reynolds et
al. 1985, Godfried et al. 1985) all yield results which are in close
agreement: 0.99(2) K, 1.00(5) K and 0.96(2) K. Possibly the early meas-
urements of Matthey et al. (1981) suffered slightly from heating of the gas.
There is yet no explanation for the large discrepancy of the zero-field
measurement of Morrow et al. (1981) from all other values.

Godfried et al. (1985) also studied the dependence of ¢, on the He film
thickness. Since the underlying H, layer has ¢, =40K, the adsorption
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energy must approach 40K as the film thickness goes to zero. On
theoretical grounds ¢, is not expected to change much due to the potential
of the H, until the film is 4-5 layers thin. A second factor which could
effect ¢, is a change of the He surface density profile for very thin films. An
increase in ¢, of more than 20% was seen in the thinnest films of 3—4 layers
of helium. This is larger than predicted by a model which does not allow
for variations in the surface density profile. Apparently, from this work, a
liquid *He film only a few monolayers thick is adequate for stabilization of
Hl.
In table 5.1, one notes the increased experimental value of ¢, for D on
*He, as compared to H on *He. This seems to be a mass effect, i.e., since
the He-D and He-H potentials are isoelectronic, D with a larger mass
and smaller zero-point energy sits deeper in the adsorption potential well,
so that g, is larger. Papoular (1983) has suggested the possibility of a dimer
state of D} on surfaces. If this is indeed the case and the data are analyzed
(ignoring this) in terms of a single-atom adsorption energy, then the
experimentally determined value would be too high. There is no experi-
mental evidence of the dimer state and the experimental value does not
differ enough from the scaled value of Stwalley (table 5.1) to support
Papoular’s suggestion even though the Stwalley theory is quite rough.
In comparison to *He surfaces there is a substantlal reduction of &, for
*He surfaces. This is due to the lower density of *He and its more extended
surface profile. Jochemsen et al. (1981) measured this in zero-field by
resonance techniques. van Yperen et al. (1981) studied *He—*He mixtures.
They found a value of &, representative of *He as the *He—*He mixture
phase separates and the *He resides on top of the ‘He in contact with the
gas of H|. Oddly enough, with this substantial advantage of a lower value
of &,, most experimental work still seems to be concentrated on ‘He
surfaces This may be due to certain experimental comphcatlons and
behavior when using ’He. An alternate explanation is that *He is generally
introduced into a cell in the latter part of an experiment to avoid impurity
contamination of pure ‘He which results from outgassing of *He from
teflon, etc., in the loading section of a cell. Small amounts of *He can have
a significant effect on g,. Since these experiments are usually long and
exhausting, fatigue of the experimenters may influence a decision to
terminate with satisfactory results for ‘He.

5.5. TwWO-BODY SURFACE RECOMBINATION RATE CONSTANTS

In this section we discuss the experimental values of the two-body surface
recombination rate constants such as K'', K& which arise in eqs. (5.14),

aa?
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(see section 6). In experiments in which the occupation of the hyperﬁne
states correspond to thermal equilibrium, K = (A/V)AZ, x
exp(2e,/ kT)K The most common technique for determmmg K® is to
measure K" as a function of temperature (at fixed magnetic field). By
plotting In(K*"VT) versus 1/7, one finds a straight line with intercept
related to K*. It is sometimes convenient to use the crossiength, g, which is
the two-dimensional analogue of the cross section, defined by K* =80,
where v, = (wkT/ 2m)''? is the average velocity in a two-dimensional gas
(see also eq. 6.79d). Jochemsen et al. (1981) used a different expression,
= (32kT/37m)"">.

5.5.1. Deuterium

The first measurements were made by Silvera and Walraven (1980b) on
DJ, as discussed in the previous section. The difficulty they encoun-
tered in determining the intrinsic recombination rate constant was in the
uncertainty of the surface area. If we assume that as was most llkely, the
sinter m this cell was caplllary ﬁlled w1th “He, then A=5.5cm’, V=
0.68cm® and K°B*T"2=3.7%10™° cm®K ™" T?s ™. If the sinter was
not capillary filled, the area is estimated to be 400 cm? w1th V=1.14cm’,
and K° would be decreased by ~17.

5.5.2. Hydrogen

5.5.2.1. Magnetic-field dependence
K® was first measured for H on *He in zero-field by Morrow et al. (1981)
and in high fields by Matthey et al. (1981). We first discuss the UBC
experimental apparatus of Morrow et al. for which the low-temperature
section is shown in fig. 5.7. The cell consists of a pyrex ampule containing
0.1bar of H, and 0.5bar ‘He sealed in at room temperature. At low
temperature the He covers the H, substrate with a saturated film. The H is
produced in a low-temperature discharge generated by a 100 W rf pulse
lasting up to 1 ms, short enough to prevent excessive heating of the cell.
The detection was done with magnetic resonance at the zero-field hyper-
fine transition (see fig. 2.1) using a 1420 MHz spectrometer (Hardy and
Whitehead 1981) which is discussed in more detail in section 5.10. The
density n was proportional to the resonance line strength, and could be
accurately measured as a function of time enabling a determination of the
decay constant.

Matthey et al. (1981) used the cell shown in fig. 5.5a and measured the
pressure and temperature, determining the density from the ideal gas law,
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Fig. 5.7. The low-temperature part of the zero-field resonance apparatus used by Morrow et
al. (1981). Hydrogen is produced by a pulsed discharge in the lower part of the glass cell and
detected by resonance at 1420 MHz in the upper part.

n = p/kT. A typical decay curve in a magnetic field is shown in fig. 5.5b. A
suitable plot and fit enables a determination of K°. This was measured as a
function of magnetic field, the results being shown in ﬁg. 5.8b. Here the
rate constant was first shown to be proportional to B ™~ (for high fields)
which lent strong experimental support to the idea that the principle open
channel for recombination was due to the admixture (proportional to B ')
of the up-spin into the hyperfine state |a) (see section 6). Subsequently
there have been a number of measurements of decay at various fields and
temperatures. Much of this data is collected and compared in fig. 5.9a.
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Fig. 5.8. (a) A plot of In(K*"VT) versus 1/T for H| on “He. (b) A plot of the data
demonstrating the magnetic-field dependence of K ' (after Matthey et al. 1981).

The solid lines represent theoretical second-order recombination on a
*He surface for magnetic fields ranging from 0-10 Tesla. The curves are
obtained by scaling with £, (eq. 6.17), assuming an equilibrium distribution
over the four hyperfine levels. To fix the absolute value of the left-hand
scale, the zero-field curve is fit to the UBC data of Hardy et al. (1980b)
(open circles). Concentrating on the B = 10 T curve of fig. 5.9a one notes
that with increasing temperature the rate decreases exponentially until at
approximately 1K the temperature is sufficiently high to populate the c-
and d-levels. Then the rate increases sharply until the curve joins the
B =0T curve indicating that all hyperfine levels are equally populated. All
curvature in the B = 0 T curve is a result of the temperature dependence of
A,,- Note that for B =2 T the rate is essentially constant between 300 mK
and 1K.
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Fig. 5.9. (a) K*" and K" as a function of 1/T for H on “He surfaces. Solid line: K*"; dashed

line: K*. [UBC: B=0T, Hardy et al. (1980b), Morrow et al. (1981); B=4T, Statt et al.

(1985); Amsterdam: B = 7.9 T, Matthey et al. (1981); B = 5.6 T, Matthey et al. (1984); MIT:
Cline et 4l. (1981); Cornell: Yurke et al. (1983).]

The dashed lines in fig. 5.9a represent second-order volume recombi-
nation, enabled by the presence of *“He vapor. Morrow et al. (1981) found
the zero-field rate constant of 0.28(4) x 10 cm®s™" at 1K in *He and
Jochemsen et al. (1982) found 0.12 X 10™** cm® s ™" at 0.5 K for *He (UBC
results). The various lines in fig. 5.9a are obtained by scaling the UBC
results (open circles) using eq. (6.16) and “He vapor pressure data. One
observes good agreement between the zero-field UBC data and the
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Fig. 5.9. (b) Same as {(a) but now for *He or ‘"He—*He surfaces (Amsterdam: van Yperen et
al. 1981; UBC: Jochemsen et al. 1982).

high-field results obtained in Amsterdam (Matthey et al. 1981). The
Cornell data (obtained at B = 8.3 T by Yurke et al. 1983) and the MIT data
at B=11T (Cline et al. 1981) lie 20-30% below the scaled curve. A
similar plot for *He surfaces is given in fig. 5.9b.

The agreement between theory and experiment is quite impressive,
considering that it spans eight orders of magnitude.

5.5.2.2. Thevalue of K*

K* has been measured in several laboratories and there exists some scatter
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with the value of Matthey et al. (see table 5.1) appearing to be much larger
than the average. An accurate determination requires precision measure-
ments as it is determined from a logarithmic plot of In(K “VT)versus 1/T
in which K* is proportional to the intercept on the ordinate. One might
expect a smaller value of K* for H| on *He than on ‘He as the helium
density enters into K* (analogous to eq. 6.26) and *He has a lower surface
density than ‘He. However, to obtain a proper comparison, a measure-
ment for both “He and *He should be made in the same cell to remove
systematic errors.

5.6. DoUBLE poLARIZATION: H{{

With the determination of K°"(B), it was immediately clear that high
densities of H| wculd not be easily achieved. The maximum density to
which a cell can be filled is calculated by setting the recombination rate
equal to the filling flux. Setting 7 =0 in eq. (5.16) yields

n™ = B[¢,/K*V]'?, (5.19)

where we have written K° = K*/B’. With an optimized cell the highest
densities that could be achieved, with B=10T and T =300 mK, was a few
times 10'”/cm’. The highest static fields presently available could only raise
this by a factor of three.

A suggestion of Hardy led Statt and Berlinsky (1980) to calculating the
possibility of b-state enhancement due to preferential recombination and
nuclear relaxation* bottlenecking. The idea is that if only the a and b
states are populated and the (nuclear) relaxation rate G,, from a to b is
small, then the occupations of the states can come out of equilibrium.
They calculated a favorable nuclear relaxation time T,=10"s for n=
10'%/cm’ Since a-a collisions and a-b collisions can lead to recombin-
ation to H,, but collisions between fully polarized b-state atoms cannot
(see section 6), and since K}, or K, > G,,, the b-state population will be
enhanced as the sample decays away. If the population n, > n,, then the
main channel of atomic decay will be relaxation from b to a, followed by
recombination. The sample will then decay at a rate of 2G:y rather than
K*" as shown in eq. (5.17). Note that the atoms in the b-state are both
electron and nuclear spin polarized.

van Yperen et al. (1981) attempted to observe this nuclear-spin en-
hanced state by lowering the cell’s temperature to rapidly deplete the
b-state, however, the entire sample decayed away [they later realized that

* We use nuclear relaxation as shorthand for nuclear spin relaxation.
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Fig. 5.10. (a) A cleanly etched copper cell with a saturated film of “He above the puddle in

the bottom, used to produce H{{ (after Cline et al. 1981). (b) Decay of the density of H at

T=300mK, B = 11 T. The two decays showing very different slopes for the same density was

the first demonstration that the a- and b-states are coming out of equilibrium to produce a
gas of enriched b-state hydrogen (after Cline et al. 1981).
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macroscopic magnetic impurities in the walls of their cell enhanced the
relaxation rate, keeping the occupations of the hyperfine states in equilib-
rium (Sprik et al. 1982)]. Cline et al. (1981) first succeeded in obtaining
double-polarized hydrogen. They used a standard top-loaded cell which
had cleanly etched surfaces, covered with a saturated film of *He, shown in
fig. 5.10a. The production of H|{ is dramatically demonstrated in fig.
5.10b showing the decay of the density measured with a pressure gauge. If
the occupations of the hyperfine states remain in equilibrium, then the
decay rate will depend only on the density » and not on the history of
filling and decay. Their cell was first loaded to a high density (point B)
and allowed to decay to point D where the gas was destroyed. After
reloading to the density corresponding to C, the sample was seen to decay
at a much different rate which could only be explained by b-state
enhancement. Subsequently, Sprik et al. (1982) constructed a cell free of
macroscopic magnetic impurities and were able to fill to densities of
3% 10""/ecm’, decaying to polarizations estimated to be as great as 99.8%.
Although higher densities cannot easily be achieved by direct filling, the
production of H|{{ made it possible to increase the density by more than
an order of magnitude in subsequent compression (see section 5.12).
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Fig. 5.11. Development of the densities of the hyperfine states and polarization as a function
of time as measured by ESR. The inset shows the ESR line shape for one of the transitions
(after van Yperen et al. 1983).
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A direct demonstration of double-polarization was provided by the ESR
measurements of van Yperen et al. (1983). The ESR signal is proportional
to the differences in density between initial and final states, (n, —ny).
From fig. 2.1 we see that the allowed ESR transitions are a—d and b— c.
Since for H|, the ¢ and d states are depleted, the ESR signal is
proportional to n, and n, for the two allowed transitions. In fig. 5.11 we
show their plot of n,, n, and the nuclear polarization P = (n, — n,)/(n, +
ny) as a function of time. Both n, and n, start with the same slope as
¢, = ¢,, but already in the filling stage the sample becomes highly
polarized. In this case conditions were such that the sample polarized for
more than 80%.

5.7. MEASUREMENT OF K, AND K},

With the successful production of H|{ it becomes important to know the
ratio

y=K /K3, , (5.20)

(see section 6.1 for theoretical considerations) as vy ultimately determines
the density of H|{ to which the sample decays from its initial unpolarized
mixture of a and b states (Sprik et al. 1982). Defining the final to initial
density as n_/n, and assuming n, /n, =1, the following limits are found:

(1) if K;, =0 then n./n, =0.5 as only the a atoms will recombine,
(2) if y=1 then n,/n,=0.25, and
(3)if y=0(K;,=0), then n_./n,=0.

For the initial conditions given above, one finds in general

ning=3(2y)47" . (5.21)

Sprik et al. measured y by working at a low density (so that T is long),
rapidly filling a cell so that n,/n, =1 (from fig. 5.11 we see that
polarization can become substantial even during the filling phase) and then
allowing the gas to decay to its asymptotic value to determine n./n,.
Density was measured with a pressure gauge. Using eq. (5.21) they found
v =2.23(25) independent of temperature in the range of measurements
(225-300 mK) this is shown in fig. 5.12, which summarizes results of
different experiments.

Yurke et al. (1983) employed the same technique, however, they had an
NMR coil in their cell and after filling they were able to saturate the a— b
transition to equalize the densities, i.e. n,/n, =1. They were able to
detect a temperature dependence, with vy increasing from 2.8 to 3.9
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Fig. 5.12. A summary of results of measurements of y = K *./K;, versus T. @, Sprik et al.
(1982); W, Yurke et al. (1983); O, A, Statt et al. (1985).

between 280 and 500 mK. Their data just overlaps Sprik et al.’s and there is
no serious discrepancy.

Statt et al. (1985) have used ESR to monitor the decay of density of the a
and b states. By fitting rate equations they were able to determine K;, and
K:, separately. Their values for y which decreases with increasing
temperature are also shown in fig. 5.12. We are unable to explain the
differences in the measured temperature dependences.

5.8. NUCLEAR RELAXATION
5.8.1. Intrinsic relaxation

Clearly the nuclear relaxation rate between the b and a hyperfine levels
plays a major role, often rate controlling, in the decay of hydrogen. The
fact that it bottlenecks the recombination means that nuclear T,’s can be
determined by measuring the decay of the density [see eq. (5.17), where
G!,=(2T,n)"']. In their experiment on nuclear polarization, Cline
et al. (1981) first observed the T, bottleneck and determined G
with G, T V?=353)x10"" em’s'K™"? and G3,T7'=1.7(4)x
1072 ecm®s™ ' K™ on a cylindrical-shaped cell with the magnetic field
parallel to the cell axis. As will be discussed in section 6, G, is predicted to
have a weak temperature dependence, and the T ™' behavior was used by

Cline et al. in the absence of any theory at that time.
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Sprik et al. (1982) designed a cell that emphasized the surface effects
because of its large surface to volume ratio. It had a pancake shape, so that
the field was normal to most of the surface. This design was inspired by
calculations (Lagendijk 1982) which predicted an anisotropy in G, such
that it would be zero if B was parallel to the surface normal. They found a
value of G}, in agreement with Cline et al. (1981) and a nonzero value of
G;,, contrary to expectations for this geometry. The nonzero value was
explained in terms of a microscopic surface roughness such that an average
over B-n, where n is the surface normal, washed out the anisotropy
effects. Yurke et al. (1983) found similar results.

Sprik et al. (1982) also measured the magnetic field dependence of G,
and found reasonable agreement with the predicted dependence (see
section 6.2), (1 + 16.68/B) > For reasons to emerge later, we show their
unpublished data in fig. 5.13. They quoted a value a(G},) (1+
16.68/B) > =3.4(1.0) X 10~ cm®/s, where (G:,) is the orientational
average of G, and « represents the microscopic to macroscopic (project-
ed) area ratio, estimated to be 1.17. They also tried to measure G}, on a
’He surface at low temperatures down to about 80 mK but did not observe
any surface relaxation. They attributed this to the *He filling in the surface
roughness, so that (G}, ) =0.
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Fig. 5.13. The magnetic field dependence of G}, [G! is an effective rate constant related
to G:, as introduced in section 5.1.2] for H| on ‘He, from Sprik et al. (unpublished). This is
probably more representative of the field dependence of K3, as discussed in section 5.11.
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The most challenging problem to emerge from these studies was that,
even though G, was found to be in good agreement with theory, the
experimental value of G}, was about 50 times greater than predicted by
theory. For a few years, a number of efforts were made to understand
this. Van den Eijnde et al. (1983) made some exhaustive studies but could
only bring the discrepancy down to a factor of 35.

This problem has been resolved by the experimental observations of
Hess et al. (1984). In studying three-body recombination, they found a
large contribution from a decay rate term of the form Lo® (L= K},,)
which was attributed to a dipolar surface recombination process first
suggested by Kagan et al. (1981). They suggested that in the interpretation
of earlier measurements this term was not in the rate equations, and the
decay due to this process was attributed to the second-order relaxation
process. This has been supported by recent measurements of Reynolds et
al. (1985) who studied decay at low temperature with ESR, and were able,
as were Hess et al. (1984) (see also Bell et al. 1984b), to separate K}, and
G, - In their preprint they do not quote experimental values for these two
rate constants, but give results in graphical form, shown in fig. 5.14. The
smaller value of G}, is now in agreement with theory. However, the
experimental value of the three-body surface recombination rate is
substantially larger than predicted by calculations of de Goey et al. (1984).

5.8.2. Impurity relaxation

As was already mentioned, the negative result in the attempt of van
Yperen et al. (1981) to observe H|J was attributed to impurity relax-
ation on the surface of the cell. (The means of accounting for this in the
rate equations is given in section 5.2.3.2.) Sprik et al. (1982) performed a
chemical analysis of the surface of a machined copper piece. They found
large concentrations of iron in the first few tenths of a micron and then
the concentration reduced to the bulk value of about 10ppm of Fe.
Evidently, small pieces of ferromagnetic material from the machining
tool were left in the surface. These grains create magnetic field
inhomogeneities which fall off as the inverse third power of the distance.
Since the grains are of order 10* A and helium films are 200-300 A thick,
the He does not shield the H| from impurities. In the coordinate system
of the moving hydrogen atoms, the impurity field is time varying and if
this has a Fourier component at frequency (E,—E,)/#, transitions can
occur. A measurement of the static magnetization of the 2850 FT epoxy,
used in parts of the interior of the cell, showed it to have weak
ferromagnetic properties. The message from this is that cells must be
prepared with painstaking precautions if H|{ is desired.
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Fig. 5.14. (a) The surface relaxation rate as a function of 7~ ', The data points of Reynolds et

al. (squares) have been separated from the three-body recombination process (after Reynolds

et al. 1985). (b) The third-order surface recombination rate constant L,=26,K e (after
Reynolds et al. 1985).

Even well etched cells usually contain submicroscopic (clusters) or
atomic magnetic impurities which lead to first-order impurity relaxation.
Sprik et al. (1982) studied the first-order process as a function of He film
thickness. For very thin films a large first-order process was observed. This
could be completely suppressed with a thick (200-300 A) saturated film of
He. The MIT group and the UBC group (Statt et al. 1985) have built up
thick layers of H, (recombined H) in their cells to suppress first-order
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relaxation. Statt et al. presented a model for impurity relaxation in which
they assume the presence of 75 A iron clusters on the surface of OFHC
copper. They give the result of an unpublished calculation (Berlinsky
1984) yielding relaxation rates which depend exponentiaily on the
thickness of the He film. Godfried et al. (1985) have taken advantage of
the impurity relaxation. In their study of ,, an equilibrium gas was
desired. A surface covered with large iron grains (~50 p diameter) was
placed in the cell to promote rapid relaxation.

5.8.3. Relaxation and the boson nature of H|

In the calculation of nuclear relaxation rates of H{, i.e., b— a relaxation,
great care must be taken to properly symmetrize the wavefunctions used in
calculating the matrix elements. Lagendijk et al. (1984) realized that
relaxation measurements might be used to experimentally verify the boson
nature of H|. They calculated the volume relaxation rate for bosons,
fermions and classical particles. Their results, shown in fig. 5.15, give
strong support of the composite boson nature of HJ.
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Fig. 5.15. The volume nuclear relaxation rate as a function of temperature for B=8T,

calculated under various approximations. The curve labelled 5 is for classical particles. The

points are experimental results (after Lagendijk et al. 1984). [A, Cline et al. (1981); 0J, Sprik
et al. (1982); O, Yurke et al. (1983); B, Sprik et al. (1984).}
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5.9. ELECTRONIC RELAXATION

Electronic relaxation corresponding to b—c or a— d transitions is more
difficult to study because population of the ¢ or d levels in H| leads to a
highly unstable sample, i.e., the prime requirement in stabilizing hydrogen -
is to polarize the electronic spins to suppress recombination. In compres-
sing samples of hydrogen to high density Sprik et al. (1983) and Tommila
et al. (1984a) noted that under certain conditions samples would become
unstable and explode. (See section 5.12 for a description of the experi-
ment.) Since the atoms were all in the b-state before compression they
concluded that rapid three-body recombination heated their samples and
the heating populated the c-state by electronic relaxation. This process is
thermally activated, i.e., G, xexp(—g.usB/kT). By carefully studying
the decay of a sample of b-state hydrogen at elevated temperatures near
the onset of this process (B/T <10.5T/K), G, could be determined.
b-state atoms decay either to the a-state or the c-state followed by
recombination. Gy, is weakly field- and temperature-dependent and well
studied and understood; G could be separated out by means of its strong
exponential dependence on B/T. In fig. 5.16, G* = G}, + G,. is plotted
versus (1 + 16.68/B)” which is the expected field dependence for Gy, so

that the contribution from b— a relaxation should give a straight line.
Deviations from the straight lme are. attributed to G,.. Sprik et al. found
G..exp(1.34B/T) = 8(4) X 107" cm®s™" (units: B in T T in K) in excel-
lent agreement with the theoretical result of 9.7 X 107" cm’s™! (Lagen-
dijk et al. 1984). (See also Kagan et al. 1981.) Bell et al. (1984) have also
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Fig. 5.16. Magnetic field dependence of the bulk relaxation rate constant G* = G, + G..
The dashed line is the theoretically predicted value for Gy, (after Sprik et al. 1983).
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measured G,.exp(1.34B/T) and find a value 10(1) X 10 " cm®s™", in
good agreement with Sprik et al. Recently, Sprik et al. (1985) have
presented a new analysis of bubble decay experiments and find an
improved value, Gy exp(1.34B/T)=12(4) x 10" "® cm>s™".

5.10. NUCLEAR MAGNETIC RESONANCE

Atomic hydrogen is an unusual system for NMR: due to the hyperfine
interaction, the resonance frequency is generally in the GHz frequency
range, as can be seen from figs. 2.1 and 2.3. Due to the high frequency,
special NMR coils with very few windings—as few as one—are used for the
resonator. A split-ring resonator used by the UBC group (Hardy and
Whitehead 1981) is shown in fig. 5.17 along with the 1420 MHz spectrome-
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Fig. 5.17. A split ring resonator and a block diagram of a 1420 MHz pulsed spectrometer
(after Hardy et al. 1982).
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ter. This zero-field resonance system was used with the cell shown in fig.
5.7. Zero-field resonance has been used with great skill to study properties
of atomic hydrogen, and it is useful to consider this case in some detail.
The transition which is studied is the a— c transition, labeled F,_in fig. 2.1.
This is observed by parallel resonance in which the oscillating rf field is
along, rather than perpendicular, to the (small) static field B,. Other than
this, the system behaves as a two-level spin system and can be analyzed in
terms of a fictitious spin of 1, so that the vast knowledge of this system in
the existing literature can be used.

In the preceding sections (5.4 and 5.5) we have already discussed many
of the experiments and results that were obtained from zero-field parallel
resonance on atomic hydrogen, and a more detailed description can be
found in the review by Hardy et al. (1982). The zero-field work of Hardy et
al. had some distinct advantages. Shielding easily reduces the field to a few
mG and as a comsequence extremely narrow lines (~0.1 Hz) can be
observed. Since the resonance frequency for the a— c transition is

hv = a+ [A(y, + v,)B)Y2a (5.22)

and only depends on B in second order, small inhomogeneities can be
tolerated for low fields. Therefore, linewidths are determined only by the
interactions of the H atoms amongst themselves or with the walls. Because
hydrogen is not very stable in zero-field, the densities are very low,
n<10'"cm> However, the very narrow linewidths give very high sen-
sitivities, of order 10° atoms. Thus, as we have seen the zero-field
technique is very valuable for measuring single-atom properties or the
interaction of hydrogen with He surfaces. In particular the very narrow
resonance lines indicate that a low-temperature hydrogen maser could be
developed, with substantial advantages over the room-temperature maser
(Berlinsky and Hardy 1981). Recombination rates of H at very low
densities have also been measured on surfaces or in a dense buffer gas of
He (which provides the third body necessary to satisfy the kinematics of
recombination). The obvious limitation of this technique is that the
densities of H are so low that many of the interesting properties due to
H-H interactions are inaccessible.

The first high-field NMR studies of H were performed by the Cornell
group (Yurke et al. 1983) using a high homogeneity superconducting
solenoid operating at B ~ 8 T with a 1 GHz helical resonator shown in fig.
5.18, which also shows their sample cell. Samples with densities of order
10'®/cm’ could be loaded into the cell. A superfluid fountain pump was
then used to fill the sample chamber to a level which closed off the H| fill
tube to isolate the sample. The cell was also equipped with a pressure
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Fig. 5.18. A schematic diagram of the NMR cell used by the Cornell group (Yurke et al.
1983).

gauge to measure the H| pressure. Although Yurke et al. reported the
observation of free induction decay signals, quantitative measurements
using the NMR signal were not presented, presumably due to the
inhomogeneity of the pulsed field. Instead they used the rf power to
saturate the a— b transition to prepare the sample in a well-defined state
of polarization. The pressure gauge was then used to study the decay of the
sample and y = K,/ K, was measured (fig. 5.12).

The Cornell group (Johnson et al. 1984) then changed their resonator to
a split-ring type, similar to that shown in fig. 5.17. The resonator was em-
bedded in solid material so only the inside volume was available for the
hydrogen gas. In this way the atoms experienced a rather uniform rf field.
A small static gradient field was superimposed on the uniform static field
and pulse measurements with tipping angles of order 10° were made; the
gradient field is used for the coupling to the rf field. In this way, they were
able to observe a fascinating new phenomenon, nuclear spin waves in a
gas. This effect had been predicted independently by Lhuillier and Laloé
(1982a,b) and Bashkin (1981). A series of spectra for different field
gradients is shown in fig. 5.19. The spectra are the Fourier transforms of
the free induction decay. The various peaks are due to different spin-wave




Ch. 3, §5] SPIN-POLARIZED ATOMIC HYDROGEN 227

(¢)
S L«/‘."WWT” .
W (b)
%2 | )
o
o.—10 —15 | cl) - 5

Fig. 5.19. The NMR spectra of H| for different field gradients showing the spin-wave modes.
From trace (a) to (c) the change in the gradient field is about 1 G/cm. The density was
n=3.2x10"%cm® and T=245mK (after Johnson et al. 1984).

modes and have been analyzed by Lévy and Ruckenstein (1984). These
spin-wave modes are a direct result of the identical-particle nature of H{
and are discussed in section 8.

5.11. ELECTRON SPIN RESONANCE

The first quantitative ESR measurements of H| in high fields were made
by van Yperen et al. (1983, 1984) [preliminary work at low fields was
reported by Mayer et al. (1981) and at high fields by Statt and Hardy
(1981)]. They used the broadband single-pass cell shown in fig. 5.20. A
160 GHz source was obtained by taking the fourth harmonic from a
harmonic generator fed by a 40 GHz Gunn oscillator. The microwave
radiation passed through the sample and was detected with a low-
temperature bolometer. Both the a—d and b—c transitions were ob-
served. The line shape for the b— c transition is shown in the inset of fig.
5.11. The rather strange multi-peaked line shape is due to the
inhomogeneities in the magnetic field. The field is uniform up to one part
in 10% in a sphere of radius 0.5 cm around the center, but has bumps of the
order of a few Gauss outside of this region, which also contains atoms
contributing to the signal. Due to the very narrow intrinsic linewidth, the
line shape is a reflection of the number of atoms which satisfy the
resonance condition, and large numbers of atoms satisfy this condition
wherever the field has a zero gradient. An absorption line shape of the
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Fig. 5.20. An experimental system used for studying H| by ESR (after van Yperen et al.
1983).

form

aB

a() =72 (4 en) 22 (22) o)

9z

(5.23)

was derived which gives multiple peaks if the field gradient goes to zero in
several regions. Radial gradients, not accounted for in eq. (5.23) prevent
a(v) from diverging. In eq. (5.23), n,, is the density of the initial hyperfine
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state. As explained earlier, van Yperen et al. were able to use the line
strength to monitor the a and b populations and directly demonstrate that H
becomes nuclear polarized as shown in fig. 5.11. The interesting multiple
peaked line shape, explained by eq. (5.23), is also shown in the inset of
fig. 5.11. No evidence of electronic spin-waves, analogous to nuclear
spin-waves, could be observed since the cell was not optimized for such
an experiment.

Statt et al. (1985) have studied hydrogen by ESR in high fields using a
3mm diameter cavity, resonant at 114 GHz. Resonance detection was
accomplished with a sensitive heterodyne spectrometer so that a very low
power level could be used. This was necessary as in an earlier design the
power perturbed the sample density significantly (an atom with reversed
spin, due to resonance, can be lost from the system due to recombination,
ejection by magnetic-field gradients or relaxation). They were able to trace
the decay of the a and b densities and determine the rate constants by
fitting to the rate equations. Their results for y are shown in fig. 5.12, which
has been discussed earlier. More recently with the same system, Reynolds
et al. (1985) were able to separate the three-body surface recombination
rate constant from the nuclear relaxation rate, shown in figs. 5.14a,b. In
this same work at very low temperatures, 7 =100 mK, in addition to the
signal coming from the bulk atoms they were able to observe weak signals,
which they assigned to surface adsorbed atoms. This represents the first
direct observation of surface adsorbed atoms and led to the value of
g, =1.00K given in table 5.1.

5.12. COMPRESSION EXPERIMENTS

One of the major goals of spin-polarized hydrogen research is to obtain
Bose—Einstein condensation. Evaluating eq. (1.10) for the critical temper-
atures shows that for T, = 100mK, a critical density of 1.6 x 10"°/cm” is
required. By direct filling techniques, the maximum density that has been
achieved is about 3 X 10'"/cm?, which can then decay down in density to
the much longer lived double-polarized state. To achieve the densities
required for BEC at a reasonable temperature, a sample of H{$ must be
compressed. Ideally, the compression apparatus should enable detection of
BEC by, for example, measurement of the equation of state ( p versus V at
constant 7) which has a characteristic shape for a Bose gas. Two
compression experiments were performed at about the same time, using
different techniques: Sprik et al. (1983) in an Amsterdam—Harvard
collaboration and Hess et al. (1983) at MIT.

We first discuss the experiment of Sprik et al. (1983); we go into some
detail as they introduced a quasi-constant pressure method of studying H |
which has also been used by Tommila et al. (1984a). Previous to these ex-
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periments, decays werg studied in a constant-volume system and the decay
of the pressure or density was measured as a function of time. This has a
distinct disadvantage if one is interested in studying a high-density state.
Since the decay depends strongly on a higher power of the density, the
highest densities are available for the shortest times. By studying a sample
isobarically, the density remains constant during the decay. In this case the
volume, V, of the sample decreases as the atoms recombine and decay
kinetics can be studied by observing the rate of decay of V. Sprik et al.’s
cell is shown in fig. 5.21. The central cell (CC) inside the bore of the
magnet is divided into an upper and lower chamber. The CC is connected
by a tube to a reservoir of helium; the He level can be varied by raising or
lowering a weight. With the He level low, H flows into the upper chamber
and diffuses through a connecting tube into the lower chamber. By raising
the He level, this tube is sealed off and the He is compressed against the
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Fig. 5.21. A compression cell for quasi-isobaric measurements (after Sprik et al. 1983).
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curved roof of this chamber, between two capacitor plates. The He level is
now held constant so that the gas bubble in between the capacitor plates
is hydrostatically compressed by a constant head of He. The capacitor
serves as a volume meter. When it is completely filled with liquid He
(dielectric constant & = 1.057) there is a considerable change in capaci-
tance compared to when it is empty. The H{ bubble (dielectric
constant == 1.0) displaces a volume of He and the capacitance change is
easily calibrated to yield the volume of the bubble. Very small volume
changes of order 102 mm? could be detected. A measurement of the He
head gives the hydrostatic pressure.

The actual pressure acting on the gas is increased by the surface tension
(a) of the He so that

p= phydrostalic + pst ’ (524)

where p,, =2a/r for a spherical bubble of radius r. Thus, as the bubble
shrinks its pressure and density increases. It is easily shown for an ideal gas
at constant temperature with decay rate N/V=—D(n), where D(n) is a
polynomial in the density, that

V_ D(n) vV dp\~!
T/‘—-———n—(l'l';d—v) . (525)

In the event that p is constant (this is approximately so for bubbles with
V =1mm’) then V decays exponentially with a decay constant =
— D(n)/n. Decay curves for a few different pressures, magnetic fields and
temperatures are shown in fig. 5.22.

By measuring 7' as a function of density, the polynomial D(n) could be
determined. Using this technique Sprik et al. found that for densities above
~10"%/cm® a new decay process, three-body volume recombination of
b-state atoms, becomes important and limits the growth of density. Their
value of the third-order decay constant (coefficient of n’ in the decay
equation) to be associated with Ky, was L' =4(1)x107% em®s™, at
T=750mK and B =9.8T, in reasonable agreement with the theory of
Kagan et al. (1981) for three-body decay due to magnetic dipole—dipole
interactions. What Kagan et al. actually calculated was the number of
three-body recombination events, not the number of atoms lost to the
system (Greytak 1984). Sprik et al. (1985) analyzed the problem and found
for the coefficient of n” in the decay equations

LY =20 Ky, - (5.26)

The factor 2 corresponds to the two atoms lost in the direct recombination;
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Fig. 5.22. Volume decay curves of H{{ bubbles. The peak in the lower curve represents the
explosion of an unstable sample (after Sprik et al. 1983).

the spectator atom goes to state ¢ with a probability ¢£' = 0.91 (Verhaar
1985) (see eqgs. 5.15). If it recombines, 6, =1+ £"=1.91, and on the
average 3.82 atom are lost per event. However, there is also a probability
that the c-state atom relaxes back to the b-state without recombining. For
their conditions Sprik et al. found 26, = 3.27.

Sprik et al. (1983) also observed instabilities in which bubbles exploded.
One such event is shown in fig. 5.22 by a sudden increase in volume. This
led to a measurement of G;. which was discussed in section 5.9. A
theoretical study of thermal instability of bubbles has been made by Kagan
et al. (1984); Tommila et al. (1984a) have made a systematic experimental
study of explosions.

More recently Sprik et al. (1985) have presented an exhaustive analysis
of their bubble compression experiments with an exended set of rate
equations of the form of eqgs. (5.15) including all hyperfine states. They
also found an important correction to the hydrostatic pressure on the
bubble which was not taken into account in their 1983 article.- Diamagnetic
forces exerted by the gradient in the field of the main magnet on the bulk
liquid-helium column (fig. 5.21) measurably reduce the actual hydrostatic
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pressure on the bubble. They now find a bbb third-order value decay rate
200Ky, =7(2)x 1077 em®s™ or Ky, =2.0(5)x 1077 ecm®s™"  with
20, = 3.27, for a field of 9T, in agreement with Hess et al. (1984).

Hess et al. (1983) developed a different compression technique in which
they compressed their sample into the small volume of a pressure gauge
shown in fig. 5.23. The cell was first filled with H|{, then compressed with
a piston; the piston was sealed with superfluid “He by capillarity. High
densities of order 10'*/cm”® could be achieved. At these densities the cell
and gas came way out of thermal equilibrium due to recombination
heating. The pressure and temperature are shown in fig. 5.24. They used a
thin-film thermometer deposited on the flexible pressure gauge diaphragm
to measure the gas temperature. By modeling the nonequilibrium gas they
were able to extract the decay constants. They studied three-body
recombination in the temperature range 0.3 to 0.45 K, with evidence for
both bulk and surface processes. They found good agreement with the
theory of Kagan et al. (1984), but did not quote an experimental value of
the recombination rate constants. In a later paper (Hess et al. 1984) they
give L'(=201K},.)=7.5(3) x 10" ecm®s ™" for B=7.6T.

Hess et al. (1984) (see also Bell et al. 1984a) then studied the
temperature dependence in more detail, as well as the magnetic field
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Fig. 5.23. The piston compression cell of Hess et al. (1983).
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Fig. 5.24. The pressure and temperature of H|} after a compression in the cell of Hess et al.
(1983).

dependence of the three-body rates. From the temperature dependence
they separated the three-body rate into bulk and surface contributions,
with a measured surface value of LY(=20K%,,) =2.0(6) X 10™* cm*s™"
at B=7.6T. For the surface ¢£°=0.87, so that 26} =3.74 and K3, =
5.3x 107 cm*s™, to be compared with the theoretical value (de Goey
et al. 1984) of K3, =6.5%x 107> cm*s™". For saturated surfaces (which
are.obtained for T < T ), this surface process would be the dominant loss
and heating mechanism! From these measurements they suggested that
the discrepancy between theory and experiment for nuclear relaxation
could be resolved by including three-body recombination terms in the
decay equations for H{{ (see section 5.8). Kagan et al. (1981) and de
Goey et al. (1984) have predicted that in the 5-15 T magnetic-field range,
K., increases for both surface and volume process. Hess et al., measur-
ing up to about 9T, found a weak decrease in Ky,,. We feel that it is
important to carry out these measurements to much higher fields. In
particular, theory predicts that K3, and K, increase to B~15-20T
and then decrease sharply at about 26 T, with a slow increase for still
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higher fields. Reinterpreting the results of Sprik et al. (1982) in terms of
surface recombination, the magnetic-field dependence of nuclear relax-
ation shown in fig. 5.13 probably is representative of the field dependence
of K}, rather than G;,.

For B/T <10 T/K, Bell et al. (1984a) and Sprik et al. (1985) observed
an exponential increase in the third-order term which was attributed to
the onset of bbc-recombination. Bell et al. found K°=7(3) X
107** ecm® s ™! which corresponds to a value K}, =3(1) x 10" cm®s ™' of
Sprik et al.

In their compression experiment Hess et al. (1984) achieved a max-
imum density of 4.5X% 10 8/cm® at T=0.57K. Certainly, to date, the
compression experiments are still far away from the region of quantum
degeneracy in H{{.

6. Theoretical aspects of stability: recombination and relaxation

In the following sections we review the various processes which are known
to limit the stability of the atomic hydrogens. Limited stability means that
the sample decays in time to the molecular state due to recombination.
This does not imply that the subject is restricted to the topic of recombi-
nation alone; relaxation processes also have to be considered as they may
play an important role in the overall sequence of processes which
ultimately lead to the formation of a molecule.

We shall attempt to treat all relaxation and recombination processes
within the framework of a single unifying formalism making use of a Golden
Rule like expression for the transition rates. This formalism can lead (and in
some cases has led) to factor-of-two (or factor-of-six in the three-body case)
difficulties in counting indistinguishable particles, and some emphasis will be
put on this aspect. One of our objectives is to make clear the relation between
calculated and experimentally determined rates.

We first discuss both volume and surface recombination (section 6.1) and
pay particular attention to the magnetic-field dependence of recombination
processes to explain the strongly enhanced stability of H| in high magnetic
fields. In section 6.2 the various volume and surface relaxation processes
will be discussed.

With decreasing temperatures the occupation of surface states will
increase due to adsorption. As a consequence, at low temperatures, the
surface relaxation and recombination processes are important, even
dominant. The adsorption kinetics may also become rate limiting; how-
ever, this subject is discussed in the context of adsorption—desorption
phenomena (sections 4.2 and 9.1).
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6.1. RECOMBINATION

An early theoretical study of the stability of H in high magnetic fields and
at low temperatures was made by Jones et al. (1958). These authors
established that under laboratory conditions three bodies are required to
form a hydrogen molecule. A two-body radiative process was found to be
entirely negligible due to the absence of a pérmanent dipole moment in a
homonuclear diatomic molecule. In recent years, much has been learned
about three-body processes. Often the role of the third body is rather
passive, just enabling the conservation of energy and momentum. In these
cases the third body may be a third hydrogen atom, a helium atom from
the vapor or a surface. However, sometimes the third body acts more
subtly by inducing the transition via particular properties of the H-H
interaction. Then the presence of a third hydrogen atom is imperative for
recombination, even on a surface.

Experimentally, one aims at distinguishing the various processes by
studying the decay rate of the H-density under carefully chosen conditions
as a function of the H-density (n). Then the decay may be described
phenomenologically by a differential equation of the type (see section 1.1)

dn/dt=—-Kn". (6.1)

The rate constant K depends in general on temperature and magnetic field,
as well as the chemical and physical composition of the gas and the
geometry of the experimental cell. The density dependence of order r of
the decay depends on the number of hydrogen atoms that participate in the
reaction. The highest order that will be considered here corresponds to
r =3 (see section 5.3 for phenomenological rate equations).

Under certain conditions the overall reaction rate is limited by a
relaxation step. Then recombination can even appear as a first-order
process (when magnetic impurities may relax the spins) in spite of the fact
that the dominant recombination channel may involve two or three H
atoms. This interplay between recombination and relaxation processes is
left outside of the considerations of the present section and will be
analyzed in detail in section 6.2.

Given the order of a recombination process the selection rules determine
which molecular (ortho or para) states may be formed. The present section
is intended to introduce the spin selection rules to which we return in detail
in the coming sections. We first discuss selection rules accounting for the
hyperfine interaction (intra-atomic Fermi contact term), the direct and
exchange interactions between the hydrogen atoms and the Van der
Waals-type interactions, between the H and He (vapor and surface). These
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interactions all conserve the total (electron and proton) spin projection

(M. = M, + My). Moreover, the interatomic interactions considered here

are diagonal with respect to the total spin basis {|SM;IM,)} of the
interacting pair. Only the (intra-atomic) hyperfine interaction may induce

transitions of (total) electron and (total) proton spin of the pair (see table

6.1) through terms of the type s ,i_, (here k is the particle index and s,

and i_ are raising and lowering operators of the single-atom spins). Thus

we obtain the selection rule

AM,=—AM, =0, *1. (6.2)

In addition, the interactions under consideration also conserve the sym-
metry of the total spin state under permutation of the pair. Combining
these selection rules, one derives table 6.2 in which we summarize all
allowed transitions for second-order (H-H-He) recombination. The same
selection rules remain valid for third-order (H-H-H) recombination
(table 6.3) if one neglects the hyperfine interaction on the third body. This
amounts to evaluating the transition amplitude to first order in the
hyperfine mixing parameter (¢) and is correct in the limit of high magnetic
fields. In section 6.1.4 the dipolar interaction which leads to new selection
rules will be included. '

Table 6.1

Matrix elements of the hyperfine interaction a[s, « i, + s, « i,] in the total spin representation.
Here P is the parity of the state and a minus sign represents a (—1).

M, 0 1 0 - 0o 1 0 - 0o 1 0 - 0o 1 0 -
1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1
M 0 0 0 0 1 1 1 1 0000 - - — -

S 6 0 0 O 1 1 1 1 1 1 1 1 T 1 1 1 S Mg I M, P

a 1a —a 00 0 0 +

a 0o o0 1 1 -

la 0 0 1 0 -

a o 0 1 - -

a 1 1 0 0 -

la 1 1 1 1 +

a 11 1 0 +

-a ~iq a 1 11 - +

ta 1 00 0 -

a 1 0 1 1 +

la a a 1 0 1 0 +

a 1 0 1 - +

a 1 - 0 0 -

—a a —la 1 - 1 1 +

a 1 - 1 0 +

fal 1 - 1 - +




A summary of all channels allowed for second-order recombination by the
selection rules AM_ =AM, + AM;=0 and AM; =<1 for hydrogen. The
transitions indicated by the symbol 0 are allowed by these selection rules but
are in fact forbidden since they imply transitions from symmetric to

Table 6.2

antisymmetric total spin states (electron and nuclear).

hh, M, p-H, o-H, Remark
symmetric antisymmetric
M, =0 M=-1 M,=0 M, =1
aa 0 1 0 symmetric
ab -1 1
ac 0 1 1
ad 1 1
bb -2 symmetric
bc -1 1
bd 0 1 1
cc 0 1 symmetric
cd 1 1
dd 2 symmetric
Table 6.3

A summary of all channels allowed for third-order recom-
bination by the selection rules AM,. =AM, + AM;=0 and
AM; <1 for hydrogen. The allowed transitions are indicated
by the symbols a, b, ¢, d, representing the hyperfine states of
the third body after the reaction. The table includes only those
channels which contribute at least to order «.

hhh, M, p-H, o-H,
M,=0 M,=—-1 M,=0 M,=1

aaa 0 a a b
aab -1 b a b

aac 0 a,c d a,c b
aad 1 d d a,c
abb -2 b

abc -1 b a,c b

abd 0 a,c d a,c b
acc 0 a,c d a,c b
acd 1 d d a,c
add 2 d
bbb -3

bbc -2 b

bbd -1 b a,c b

bee -1 b a,c b

bed 0 a,c d a,c b
bdd 1 d d a,c
cce 0 c d c

ced 1 d d C
cdd 2 d
ddd 3
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6.1.1. Resonance recombination

The dominant mechanism for volume recombination at ambient tempera-
tures is resonance recombination. This process has been widely discussed
in the chemical literature since the pioneering work of Amdur and
Robinson (1933) and Amdur (1935, 1938). It proceeds in two stages: First
a pair of H-atoms collide and are trapped into a long-lived quasi-bound
state (resonance state); subsequently this quasi-molecule is stabilized in a
collision with a third body in which it has a transition into a bound state.
 The triplet potential does not support any bound or quasi-bound states

(see section 3, fig. 3.2). In contrast, the singlet potential supports many
quasi-bound states. Hence, all resonance recombination proceeds via the
latter channel. It was shown by Roberts et al. (1969) that, at room tem-
perature and above, the occupation of the most important resonances of
the singlet potential (see section 3) reaches thermodynamic equilibrium.
The resonance-recombination theory then reduces to calculating the cross
section for stabilization of a quasi-molecule by a third body.

For low temperatures (7 < 1K) resonance recombination is thought to
be of minor importance. Near the dissociation limit the energy separation
between quasi-bound states is typically tens of Kelvins. Thus the thermal
occupation of these states is in general negligibly small. However, if a low
angular-momentum resonance happens to lie within the narrow band of
thermally accessible states, resonance recombination cannot be ruled out
on these general grounds.

As pointed out by Greben, Thomas and Berlinsky (GTB 1981), only the
H,(v, L) =H,(14,4) level is of importance in the context of resonance
recombination of H at low temperatures. As may be seen from fig. 6.1 all
other levels with low J values lie relatively far from the dissociation limit.
Experiment (Dabrowsky 1984) indicates that this level is marginally bound
by 0.26(46) K and this conclusion appears to be consistent with theory
(Kolos and Wolniewicz 1975, Wolniewicz 1983). In zero magnetic field this
excludes resonance recombination and leaves only direct (i.e., one stage)
three-body processes as important decay channels for low-temperature H.
For deuterium (Bredohl and Herzberg 1973) the D,(21,0) and D,(21,1)
levels (see fig. 6.1) appear to be most relevant.

Stwalley (1976) pointed out that with increasing magpetic field reso-
nance transitions are tuned above threshold once the M= —1 asymptote
of the triplet potential (see fig. 3.1) is shifted below the H,(14,4) or
D,(21,0) levels. We first focus on the para-state, H,(14,4). With the aid of
table 6.2 one finds that only aa, ac, bd and cc pairs satisfy the selection
rules to form p-H,. Of these pair states, only the aa-initial state may be
shifted below the H,(14,4) level. Thus, above a magnetic field B=1T,
recombination channels involving two a-state atoms may be enhanced due
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Fig. 6.1. The observed vibration—rotation levels of H, and D, for the electronic ground state

X'z ; near the dissociation limit. The data are obtained from an analysis of the Lyman and

Werner bands by Dabrowski (for H,, 1984) and Bredohl and Herzberg (for D,, 1973). The
rotational quantum number J is used here in place of L in the text.

to the presence of the resonance. However, the L = 4 rotational barrier
appears to be too high and broad to enable any appreciable occupation of
the H,(14,4) state (Stwalley 1976). :

Another p-H, level, H,(12,10), was considered in detail by Kagan,
Vartanyantz and Shlyapnikov (KVS 1981). These authors also arrived at
the result that due to the rotational barrier the resonance process is
inefficient. We note that KVS based their value for the binding energy of
this level £, |, = —10 K on the results of Herzberg and Howe (1959) and
Kolos and Wolniewicz (1968). However, recent measurements by Dab-
rowsky (1984), with an estimated accuracy of 0.1 cm ™', indicate a value
E,, ;s =—19.71 K. This implies a threshold field B = 14.6 T which is higher
than the range of fields currently used in experiments with HJ.

For the D,(21,0) level the situation is different due to the absence of a
rotational barrier (L =0). This implies a resonance-recombination chan-
nel to open up at B=59T. For higher fields the channel requires
thermal activation and may be rendered negligible in the limit of very
high fields.




Ch. 3, §6] SPIN-POLARIZED ATOMIC HYDROGEN 241
6.1.2. Second-order recombination

The first detailed theoretical studies of direct recombination processes
were made by GTB (1981) and KVS (1981). We first present a detailed
discussion of the process studied by GTB: recombination of H in the
presence of He vapor at temperatures T =< 1 K. This study was stimulated
by the experimental determination of the recombination rate constant in
zero field by Hardy et al. (1980a,b). We shall then discuss the more
exhaustive work of KVS who studied three-body recombination in pure H.

6.1.2.1. Van der Waals recombination

In the process studied by GTB, two hydrogen atoms recombine in the
presence of a helium atom as the third body; hence the process is of second
order in the density. Assuming singlet character in the interaction between
the H-atoms, the crucial momentum transfer required for recombination is
provided by the Van der Waals interaction of the recombining pair with the
helium atom. We refer to recombination processes with this signature as
Van der Waals recombination. By summing over both initial and final
states we write the total rate of recombination events (in every event two
atoms are lost) as

r=25 3 PITIS(E - E) (63)

where i) and |f) represent symmetrized three-body initial and final states,
respectively, P, is the probability that an initial state is occupied and
(f]Tli) is the full three-body T-matrix. This expression goes beyond the
Golden Rule to the extent that the transition amplitude is evaluated
beyond the Born approximation. The §-function assures the conservation
of energy in the process. Momentum conservation is satisfied implicitly by
expressing |i) and |f) in the three-body center of mass (3BCM) system (see
fig. 6.2). For the Van der Waals recombination:

i) =|hh,; p, q)
If) = |SMIM,;v, L, M, , q') =|00IM;;v, L, M, , q'}. (6.4)

The initial state |i) represents a pair of H-atoms in hyperfine states h, and
h,, moving with relative momentum p. The third-body (He-atom) moves
with momentum g relative to the center of mass (2BCM) of the H-H pair.
The final state |f) is a molecule in vibration—rotation state H,(v, L) and
spin-state |SMIM,), which moves with momentum ¢’ with respect to the
third body.

The probability P; is normalized by
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ae(1,2,3)

Fig. 6.2. (a) Relative momentum wave vector (p, and ¢,) and position vectors (£, and 7, )
for a three-body system.

2P= 2 P (6.5a)
i [hihaip.q)

= E P|h1hz:P.tl) (65b)
|h|hz'.P.q)

=% 2 N, N, Nu.P.(P)P,(q)

hh, pg

= N} Ny 2 h\h, ZP(p)EP(q)

hih2
— 1az2
- ZNHNHe’

with £, A=1; Zo,h, h,h,=1; %, P, (k) =1, and using the ket notation | )
for symmetrlzed states and ] ) for unsymmetrlzed states. We first define
the symbols used and then return to the equation for a short discussion of
noteworthy aspects of the derivation. The total number of H-H-He
trlples in a sample of volume Vis &, P, = (4 "YWy = N4 Ny h= N,/ Ny

is the fraction of H-atoms in hyperﬁne state |h), and P_(k) represents a
Boltzmann momentum distribution for a particle of mass m

P, (k)= (A}, /V)exp(—#°k*/2mkT) ,
w= QTR ImkT)"? (6.6)

where A, is the thermal wavelength. In eq. (6.5b), two of these distribu-
tions appear, one for the relative motion of the H-H pair, where m = u
(u = 3my is the reduced mass of the pair) and one, with m = v, for the
motion of the 2BCM of the H-pair with respect to the H-atom (with
corresponding reduced mass v = §my).

Notice from eq. (6.5) that &, P, = 1 N2 N, holds whether one treats the
H-atoms as distinguishable or as indistinguishable, i.e, the total number of
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pairs does not depend on the statistical nature of the particles. This allows
us to sum over all states as if the particles are distinguishable, i.e. sum over
nonsymmetrized states [i). This transition is realized in going from eq.
(6.5a) to eq. (6.5b) observing that there are twice as many unsymmetrized
states as symmetrized states, but that the probability to find a pair in a
given symmetrized state (one particle in state ““1”” and the other in state
“27) is twice as large as the probability to find a pair in one of the
corresponding nonsymmetrized states (particle “a” in state “1” and
particle ““b” in state “2” or vice versa). Once the transition to counting “‘as
distinguishable” has been made the rest of the derivation is
straightforward.

Returning to eq. (6.3), we stress the point that although we reduced the
summation to a form, eq. (6.5b), in which the summation index runs over
all classically distinguishable states, the matrix element still remains
unchanged, i.e., composed of properly symmetrized and normalized
states. To evaluate the summation one has to relate these symmetrized
states to the corresponding (preferably normalized) unsymmetrized states:

liy = Vi1 + Plli) = VE[li) + -], (6.7)

where |—i) is obtained by a permutation (P) of the H atoms in [i). If
desired, a similar procedure may be followed for [f).

With the usual continuum transition %, — V/(2#)’ { dk, and integrating
over all final g(=|q|) states, the energy 8-function disappears and eq. (6.3)
becomes

TIV=1in’ny, 2 kAT e s (6.82)
h h; :
with

Fapwe= 2 Jap [ daP.(n)P.(0)

I.Mpu.L.M,

2
14 ~ h \ |2
X r 7 '
(32) Jaa L qrearior. 60
Here n and ny,, are the bulk H and He gas densities, §' denotes the unit
vector corresponding to ¢' and viq'/(27)’ is the density of final states

evaluated at g = q’, where (see fig. 6.3)

hq'*l2v=E ~E;, =E'. (6.9)
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1 — 1

E=-2 [

|

.

V=1 J=3

g3

Fig. 6.3. Schematic diagram showing for T =0 the energy E’ released in the recombination
process. This energy is transferred to the relative motion between the recombined pair and
third body. The larger E’, the larger the number of final states available for recombination.

The phenomenology of recombination at low temperature may be
illustrated on the basis of eq. (6.8). At low temperature the initial state |i)
will contain a slowly oscillating wavefunction with little angular momen-
tum, describing the motion of the body relative to the recombining pair.
Also the distorted incoming wave (the distortion is due to the action of the
T-operator) will have this character since the interaction between the
He-atom and the H-pair is very weak. In contrast |f) is a rapidly oscillating
function, since q’ corresponds in general to hundreds of Kelvin (except for
the H,(14,4) final state, see fig. 6.1). This implies the overlap of initial and
final state wavefunctions to be averaged closer to zero the larger the
binding of the molecule in the final state. Thus low-lying vibration—
rotation states are of minor importance to our problem since the perturb-
ation of the H-H system due to the He-atom is not sufficiently strong to
enable the large momentum transfer required for recombination to these
states.

Weakly bound, high-L (L > 4) molecular states such as H,(3,27) may
also be neglected. Conservation of angular momentum implies for these
cases a high-L end-over-end rotation (in the opposite direction) of the

/




246 LF. SILVERA AND J.T.M. WALRAVEN [Ch. 3, §6

third body with respect to the molecule. The correspondingly large
centrifugal barrier prevents a close approach of the two final-state bodies,
the atom and the molecule, and thus reduces the transition amplitude due
to lack of overlap within the range of the interaction.

Another interesting and important feature occurs for incoming energies
at or just above a bound-state level. According to eq. (6.9) E’ and thus g’
must be small. Hence the transition rate vanishes due to the absence of
sufficient density of final states (see eq. 6.8b). This aspect holds in general
for direct three-body recombination processes.

Combining these various aspects, the GTB result that mainly the
H,(14,3) and H,(14,2) final states contribute, in spite of the proximity of
the H,(14,4), is put into perspective.

To gain further insight into the Van der Waals recombination we analyze
the matrix element in some detail. The T-operator is written as

TElig)linV3G+(E+in), G (E+in)=[E-H+in]™", (6.10a)
n

where H=H,+ V> and Hy=K + H, + H,;+V, +V,,, (analogous to

eq. 3.1). The subindex is used for the spectator label. The {|f)} are
eigenstates of H,. The perturbation V' enables the transition and describes
the weak interaction between the two H-atoms and the helium third body.
Neglecting pure three-body forces:

V=V, +V,=ViR +VES. (6.10b)
Using the G, operator we rewrite the transition amplitude as
(| T)i)y = liin in(fl(V, + V,)G. i) . (6.11)
nl0

The G, operator induces the proper distortion of the initial state to
account for the interaction between the atoms. GTB use the sudden
appoximation for the spin part of the incoming wavefunction. This is
equivalent to neglecting the time dependence of |SM¢IM,), arising from
the off-diagonal elements of H,, (see table 6.1). This approximation is
plau51ble since the three-body scattering time, 7, ~10 s, is short in
comparison to the characteristic time 7, = 27fi/a = 1077 s, associated with
the hyperfine interaction. The approximation is referred to as the Wigner
rule (see the discussion of this effect by Pinard and Laloé 1980) and may
break down at low temperatures. It amounts to the same as replacmg the
hyperfine adiabatic potentials (see section 3) by diabatic analogues in the
form of the singlet and triplet potentials. To go beyond this approximation
requires a close coupling treatment of the H-H scattering.
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We illustrate this point with an example. Just before the collision the
atoms may be in a hyperfine pair state such as |aa) (see table 6.4a),

|ag) = en|0000) + £°]111 —1) — en|1010) + 7|1 —111) .

Hence, at any given time a fraction (en)® of the pairs will be in the spin
state [0000). Since this is not an eigenstate of H, (see table 6.1), this pair
will be found in a relative triplet state after the characteristic time 7, ;. Of
course this is of little consequence in the absence of a spin-dependent
potential since the various components of the spin wavefunction propagate
coherently so that the spin state |aa) is conserved. However, the H-H
potential depends strongly on S so that for a collision time 7, <7, the
difference in singlet and triplet phase shifts will break the coherence and
mix up the hyperfine pair states. In the limit of short collision times, the
hyperfine interaction apparently only acts to yield a small (quasi-
stationary) population of the high-lying (see fig. 3.1) spin states [0000),
[111 —1) and |1010).
For an arbitrary initial state, we write the decomposition as

i) = |h,h,; p, ¢) = Vi[lhihy; p, g) + [hohy; —p, @)

= > |SM.IM,; p, g) (SMgIM,|h,h,) . (6.12)

SMsiM,

The state |SM(IM,; p, q) tepresents an even (S + /=0) or odd (S +
I=1) orbital wavefunction for the H~H motion. This results from the
property (SM IM,|h,h,) = (-1)**'(SMsIM,|h,h,), which is easily ver-
ified in table 6.4a.

We insert eq. (6.12) into eq. (6.11) for the transition amplitude. As VZis
spin independent the explicit spin parts project out of the matrix element,
leaving only the spin dependence of the orbital wavefunction |SI; p, q):

(fV°G, i) = ,% (0I;v, L, M, , ¢'|V*G,|0L; p, g)(SMIM,|h;h,) ,
’ (6.13a)

ISL; p, ) =Villp, @)+ (—1)°"'|-p, @)]. (6.13b)

Equations (6.13) clearly display the property that distinguishes Van der
Waals recombination from all other known three-body recombination
processes: Since the perturbation V? cannot induce spin transitions (and
the collision times are very short) the transition amplitude vanishes unless
i} already contains the singlet character required to form a bound state.
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Table 6.4b

Decomposition of hyperfine states of deuterium with respect to the total spin representation
|SM,IM,). The states that contribute for 7= 0K are indicated with an asterisk. 71, , 7_, &,
and e_ are defined in section 2.1; a=V 3%, b= \/_§ and c=V§.
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Table 6.4b (cont’d)
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This enables us to factor the spin part out from the matrix element, and eq.
(6.8) becomes

rv= %nane 2 };lﬁzrh.the > (6.14a)
hiha
with
2 v 2
Fopge= 2 K00m o) [ ap [ ag P (pPL(0)(525)
Lv, LM, ah

/)
x [aq' 2 qcon0, L M, VoG, Jotp, )F, (6.140)

where we assume the lim,, to be implicit and M, = M, + M. . The
hy h,

probability amplitudes (SMIM,|h h,) are summarized in table 6.4a (for
H and T). The corresponding amplitudes for D are given in table 6.4b. For
a tabulation of the restricted class of probabilities, |{00IM,|h,h,)|’, the
reader is referred to the GTB paper.

Apart from the point that the matrix element may be factorized into a
spin part and an orbital part, eq. (6.13) displays another interesting
feature. With the spin symmetry shown in eq. (6.13b), a condition exists on
the relative angular momentum of the H-H pair. As a consequence, for
recombination to ortho-H, (/ = 1), angular momentum has to be present in
the orbital motion of the incoming hydrogen atoms. Since for T—0
scattering primarily occurs via s-waves, the recombination rate to o-H,
should fall off dramatically with decreasing temperature. This feature
clearly projects out of the GTB results. The incoming spin-states that
contribute at 7=0K are labeled with an asterisk in table 6.4a.

Summing over the hyperfine levels, GTB (in a slightly different
notation) arrive at

riv=inn, 2 f,fdpquP#(P)Pu(q)( - )2

Lu.L.My 27h*
A
deé — q'0Lv, L, M,, ¢'[V’G.[0lp, 9)I", (6.15)

where f; represents a wonderfully compact expression for the spin depend-
ence of the probability to recombine to an ortho (/ =1) or para (I =0)
molecular state:

fi=2 kB, (00IM,|h,h,)| . (6.16)

hih,y
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To the extent that the orbital part of eq. (6.15) (second line) does not
vary with magnetic field, eq. (6.16) provides us with the field dependence
of Van der Waals recombination. This assumption is likely to be quite good
for recombination to o-H,. For recombination to p-H, the contribution to
the H,(14,4) level should be strongly field dependent. However, the GTB
results show that this final state does not have an important contribution to
the recombination rate.

To calculate the distortion due to G, requires, in principle, the solution
of the Faddeev equations for the three-body problem [for an introduction
to this theory see the books by Glockle (1983), Schmid and Ziegelmann
(1974) and Thomas (1977)]. The three-body G, operator may be ex-
panded in a multiple scattering series using a method developed by Alt,
Grassberger and Sandhas (AGS 1967) and based on the Faddeev formal-
ism. The first two terms in this expansion describe single scattering of the
He-atom off of the two H-atoms and is known as the impulse approxi-
mation. The GTB results are obtained within this approximation. The
validity of the impulse approximation is questionable in view of the low
incoming energies which favor multiple scattering effects. Moreover the
expansion does not necessarily converge. Alternatively one may say that
the distortion of the initial wavefunction due to the H-H interaction is
neglected. A rigorous solution requires the numerical integration of the
Faddeev equations, which is much more involved than the already sizeable
task of solving the impulse approximation.

A rather dramatic consequence of eqs. (6.15) and (6.16) was first
realized by Hardy (see ref. 1 of Statt, 1982). In high fields, where only the
la) and |b) states are populated, eq. (6.16) implies preferential recombi-
nation of the |a) state. In the absence of sufficiently fast magnetic relaxation
this leads to a depletion of this state, leaving the system in the pure b-state,
the doubly polarized state H|{. Thus the Van der Waals recombination
channel is bottlenecked by (nuclear) magnetic relaxation from the b- to the
a-level. A discussion of this relaxation bottleneck is postponed until
sections 6.1.4 and 6.2.3.

If the gas is doubly polarized, then after b— a relaxation, recombination
takes place via the a—b channel to yield (nuclear) spin-polarized o-H, (with
M, = —1, see table 6.2). For applications in particle physics and possible
fusion, Kleppner and Greytak (1983) have suggested that the analogous
process in deuterium might be useful in producing (nuclear) spin-polarized
D,, since spin conversion is very slow.

The ideas just discussed that recombination rates would be controlled by
the spin projection of the hyperfine pair states on the molecular state so
that magnetic fields would suppress recombination and stabilize the gas,
was first presented by Silvera (1979). The concept was published by Silvera
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and Walraven (1981b), along with the consequence that H| should
recombine to specific ratios of ortho- and para-H, depending on the
magnetic field. This can be easily read off from table 6.4a. The spin-
projection concept was one of the significant motivating theoretical
principles which provided early hope that atomic hydrogen could be
stabilized. In essence it says that if a second-order process is the dominant
channel for recombination, then complete polarization renders recombi-
nation a spin-forbidden process. Complete polarization corresponds to the
case of b—b or d—d collisions in which the initial state has zero projection
on the (electron spin singlet) molecular states (see table 6.4a). However,
due to the hyperfine interaction the a-state of H| is not completely
polarized (see eq. 2.4a), so that even though the magnetic field stabilizes
H|, there is a small but significant recombination rate. From table 6.2 we
observe that a—a recombination can only result in the formation of p-H,,
whereas a—b recombination leads to o-H,. This table shows for which
channels recombination is spin allowed for H and T, while table 6.4a gives
the actual (spin) probability amplitudes. For D the spin probability
amplitudes are given in table 6.4b.

For convenience we provide explicit expressions for f, for H (and T) and
D. With the aid of table 6.4a, eq. (6.16) may be expressed in terms of the

fractional densities 4 of the hyperfine states:
£, = 3[(@* + é%)sin’ 20 + 2d¢ cos® 20 + 2bd] , (6.17
f,=(ab + éd)sin® 6 + (dd + b¢) cos® 6 + 1(aé + bd) . '

Similarly, we obtain for D, using Table 6.4b,
Foven = 22 (6B +288) + £2m°. (248 + 88) + n’im’ (4 +28)
+ 22 (268 + Pé) + £2(ay +280) + n(2aL + ¥8)
+ 12 (B +298) + 2287 + 80) + (a¢ + B8 + ()],
fosa= 3222 (@7 + &%)+ 202 e (B2 + 8%) + m’e2af +m'in’ &b
+e2e2 Bé+ &0 8B + 2ay + P Bl +m yé + £28¢
+ 3¢+ (0% — &3)(aé + Bd)] . (6.18)
We consider, in particular, two cases:

(i) all hyperfine states equally populated (zero field; rapid relaxation).
For hydrogen: d=b=¢=d =3,

2

Y

fo‘_‘T]E’ fi=
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a ~

For deuterium: a =B =17v §=¢=(=

Rl

>

fevenzé’ foddzﬁ'

For both hydrogen and deuterium we find that only one out of four
collisions may lead to the formation of a molecule. This is as expected,
since only one out of four collisions proceeds via the singlet potential.
(ii) The a- and b- state equally populated (very high field; rapid
relaxation).
For hydrogen: d=b=1},

fozﬁgz’ fl—:%gz'

For deuterium: a =8 =9 = 3,

With the assumption that the orbital part of the transition amplitudes is
field independent, the ratio of high field and zero-field recombination rates
is given by 2&* (=1.3+107° for B=10T) and (8/3)e}, (=1.8 x 10™° for
B=10T) for H and D, respectively. As may be seen from eq. (2.4) the
rates are suppressed as B~? with growing magnetic field. This was
established experimentally by Matthey et al. (1981), who compared their
high-field results with the zero-field measurements of Morrow et al.
(1981), as discussed in detail in section 5.

6.1.2.2. Van der Waals recombination on the surface

Before we compare the GTB theory with experiment we discuss the case
where the surface acts as the third body. Although no detailed theory has
been developed for this case, it is not difficult to generalize the remarks of
the previous section. Instead of the bulk gas density (n) and volume (V)
we consider the surface density (o) and area (A), so that

riA=1e* 2 hh,T, . . (6.19)

hihy

Neglecting, for simplicity, any surface excitations (static surface) the
analog of eq. (6.8) is '

o= 2 [apppldTiP. (620)

IMyv, LM,
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The initial state
i) = [hhy; p) (6.21)

consists of two H-atoms moving along the surface with relative momentum
p. Since energy exchange with the surface is neglected, the CM-momentum
of the pair along the surface is conserved during the reaction and
recombination can only take place through desorption of the molecule. As
the atoms are in bound states, the momenta perpendicular to the surface
vary rapidly in time, resulting in a continuous exchange of angular
momentum between pair and surfacé with only the normal component of
the angular-momentum vector being conserved.
The final state

appears to be similar to eq. (6.4), but g_ replaces ¢’ since all recombination
energy (minus the adsorption energy of two H-atoms) is transferred to the
normal component of the molecular motion. Equation (6.9) now holds for
q, provided the adsorption energy is included in E;.

For the surface case the perturbation that enables the transition is the
H,-surface potential, as in the bulk case a nonmagnetic interaction, thus
conserving the significance of the f, factor of eq. (6.16). This property also
remains conserved if inelastic surface interactions are included.

The density of the surface helium oy, does not appear explicitly in eq.
(6.19) as it did in the volume reaction, eq. (6.15), yet I" should depend in
detail on the character and the excitation spectrum of the surface. For
liquid helium the low-lying excitations are the hydrodynamic modes,
whereas for high energy the excitations are free-particle like. Since in
recombination a substantial amount of energy is liberated (of order 70K
for recombination to o-H,), one may speculate (Silvera and Walraven
1980b) that the He surface atoms should behave free-particle like and
can be treated as a surface gas of density oy, =n2> =7.4x 10" cm™?,
where n,,, is the liquid density (the surface density is expected to be a bit
lower due to its extended density profile). Thus I"; , should be propor-
tlonal to oy, . If we compare the intrinsic rates of recombmatlon of He and

“He, then (ignoring the density profiles) we might expect I” He/ r'e=0.83
(=the two thirds power of the ratios of the density of *He to ‘He).
Uncertainties in experimental values are too large at present to comment
further on this point (see table 5.1).
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6.1.2.3. Relationship to phenomenological experimental rates

In section 5.2, phenomenological rate constants were given for the
recombination-rate constants of H; here we relate the second-order rate
constants of the form K, , , for recombination of two atoms with initial
hyperfine states h, and h,, to the theoretical transition rates. Noting from
eq. (5.13) that effective rates are composed of intrinsic surface and volume
rates,

Ko, = Ky e ¥ (AIV)(0y /1, Yo, [0, )KL, » (6.23)

we now find relationships for both contributions in terms of the formalism
of the previous two sections.

We shall treat the volume part in detail for a system of constant volume.
For second-order recombination of H|

a=-2K.a’ny, — Kl abny,, b=—Kabn,,, (6.24)
adding this we obtain the total rate of decay of atomic density,
h=—-2K..an,, —2K abn,, . (6.25)

We relate this to eq. (6.8) for the total rate of recombination events per
unit volume, which is (minus) half the rate given by eq. (6.25), since each
recombination destroys two atoms. In summing eq. (6.8) over h,, we get a
factor two for h, #h, and one for h; =h,, so that

—2K.@" 2K yab = ~(I' i )a” = 2ATun.)ab (6.26)

Comparing, and using analogous reasoning for surface events, using eq.

(6.19), we can relate the recombination part of egs. (5.14) to egs. (6.15)
and (6.19) to yield

K:bZI;bHe7 K, =T,

sab -

(6.27)

One easily derives for the general case

Ky=30, Ky n, =TIy, (forh #h,). (6.28)
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The ratio y=(K:,/K.,), which has drawn considerable interest in the
literature (Sprik et al. 1982, Yurke et al. 1983; Statt et al. 1985), is found to
be ‘

Ki, 1L, 1 [(0000]aa)* i
= e M= e s Ru=nRE=RE, (629
Y K:b 2 I:ab 2 |<001 - 1|ab)|2 ab n ab ab » ( )

where R} is the ratio of the orbital matrix elements which appear in I, ,
and n=(1— ¢°)""% As discussed in section 5, y=2. o

An overall view of the predictive power of the second-order recombin-
ation model for the limit of rapid spin relaxation is shown in fig. 5.9a of the
experimental section. The solid lines represent second-order recombin-
ation on a ‘He surface, for magnetic fields ranging from 0 to 10 T. To fix
the absolute value of the left-hand scale, the zero-field curve is fit to the
UBC data (open circles; adsorption energy &, = 1.15K), taking quite
arbitrarily a classical T''? temperature dependence for the orbital parts of
egs. (6.15) and (6.20). We return to the latter approximation shortly. The
other curves are obtained scaling with f;,, eq. (6.16), assuming an
equilibrium distribution over the four hyperfine levels. For the B=10T
curve one notes an exponential decrease in recombination rate with
increasing temperature. For temperatures above approximately 0.9 K the
temperature is sufficiently high to populate the c- and d-levels and the rate
increases sharply to join the B = 0 curve, indicating that all hyperfine levels
are equally populated. All curvature in the B =0 curve is a result of the
temperature dependence of A,,. Note that for B =2 T the rate is essentially
constant between 300 mK and 1 K.

The agreement with experiment is remarkable and turns out to be rather
insensitive to the precise value of ¢,. This is the origin of the 25% spread in
experimental values for ¢, (see section 5). Implicit to the present use of the
second-order recombination model to extract €, is the use of the T''?
temperature dependence of the orbital parts of egs. (6.15) and (6.20).
Since no detailed theory is available for Van der Waals recombination on
the surface it is hard to assess the error introduced by this approximation.
An indication for non-T"" behavior is the observed temperature depend-
ence of y (see section 5).

The dashed lines in fig. 5.9a represent second-order volume recombin-
ation enabled by the presence of *He vapor. The various lines are obtained
by scaling the UBC results (open circles) using eq. (6.16) and ‘He vapor
pressure data. The zero-field measurements represent the only data for
which a quantitative comparison with theory is available. The calculated
rate constant Kih (B =0)=1.8x10"> cm®s™' (GTB 1981) is in remark-
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ably good agreement with the experimental value K,r (B =0)=2.8x
107> cm®s™' (Hardy et al. 1981). More than 80% of the total rate was
calculated to be contributed by the H,(14,3) (ortho) final state. The theory
predicts the rate to drop to Kjr,,,(B=0)=3.0x 10 **cm®s 'at T=0.1K
due to the sharp temperature dependence of the dominant channel. No

experimental temperature dependence is available for comparison.
6.1.3. Third-order recombination

6.1.3.1. General

In the previous sections we analyzed a three-body recombination mechan-
ism where the transition is enabled by the Van der Waals interaction
between the recombining pair and a helium atom or surface atoms. Now
we replace the helium third-body by a hydrogen atom to obtain a
third-order recombination process. We first generalize the formalism of
section 6.1.2 to handle three identical particles. Then, in section 6.1.3.1, we
discuss how direct and exchange forces between the atoms lead to
recombination. The dipolar interaction between particles is still neglected
so that the selection rules of table 6.3 still hold. We shall emphasize the
similarities and differences between Van der Waals recombination and the
exchange recombination process as distinguished by KVS (1981) in an
unusually complete exploratory study of the decay kinetics of H|. Later,
in section 6.1.4, we also include the dipolar interaction and derive new
selection rules. The inverse problem, dissociation in H-H, collisions, also
requires an understanding of the dynamics of three hydrogen atoms. An
early study of this problem within the Faddeev formalism was made by
Micha (1972).

We start again with eq. (6.3) for the total rate of recombination events.
The initial states now represent three hydrogen atoms, two of which are in
hyperfine states h; and h, and move with relative momentum p, while the
third atom is in hyperfine state h, and moves with momentum ¢ with
respect to the 2BCM of the pair; the final states describe H-atoms in
hyperfine state h;, moving with momentum ¢’ relative to an H, molecule:

li) = |h1hzh3; P q), (6.30a)

I£) = |SM(IM,, h}; v, L, M, , ¢') = |00IM,, hy; v, L, M, , ') .
(6.30b)

The probability P, is again normalized to yield the total number of triples
(this time H-triples) ()=} N2 in the sample:
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2 P = 2 Plhlhzha;l’-q) (6313)

|hyhzhss o, g)

= 2 P|h1h2h3:P.ll) (631b)

|h1h2h3;p.q)

=INL 3 ik S P.(p) S P9)

hihzhs P

The P, ’s are defined as in eq. (6.6), be it that for our present problem the
reduced mass v is half as large due to the lighter mass of the H-third body,
v=13my,.

Since the H-atoms are bosons, the wavefunction should remain invariant
under any permutation of the atoms (electrons and protons simultaneous-
ly). The even permutations of the group P, are denoted by E, A and B and
the odd by K, L and M. Permuting the particle labels we obtain:

Elhh,hs; ps, g5) = [hihyhy5 sy g5)

Alhyhohs; ps, g5) = [hshihy; py, ),

Blh,h,h;; py, ¢;) = [h,hshys prs qy),

K|h,hohs; ps, g;) = [hihshys —py, q,)

Llh;h,hy; py, g5) = [hshohy; —py, ),

M|h,h,hy; py, g;) = [hohihy; —ps, g5) (6.32)
Here |h,h, h ; p,, ¢q.) designates that particles 1, 2, 3 are in hyperfine states
h,,h,, h_, respectively, and that the relative momentum of the 1-2 pair
equals the relative momentum of the atoms in the h, and h,, states, while
particle 3 carries the momentum of the atom in state h_. Transformations
between the various p, and ¢, are given in the summary of the Jacobi
notation (fig. 6.2b).

To evaluate the sum (6.31) we generate symmetrized states, | ), by
operating the norm-conserving symmetrization operator on unsymme-
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trized states | ):

iy=VI[E+ A+ B+ K+ L+ M) (6.33a)
=Vi[E+M]xVI[E+ A+ B]i). (6.33b)

The second line is obtained from the first by factoring out the subgroup of
even permutations, using the multiplication table of the group P, (table
6.5). Note that [E + A+ B] and [E + M] commute. Equation (6.33b)
shows that one needs only even permutations in combination with explicit
symmetrization of the 1-2 pair of the unsymmetrized three-body state. The
net result is that we may label one of the atoms with the index j and treat it
as the helium atom in Van der Waals recombination, even if the inter-
atomic potential depends via the exchange interaction on the spin states of
the atoms. The effect of indistinguishability is accounted for by cyclically
permuting the particle labels (with the operator [E + A + B]) and adding
the amplitudes coherently.

The symmetrization procedure of eq. (6.33b) is also well suited for the
final state, where one has to symmetrize the molecular state, but also
should account for the fact that we do not know which two atoms constitute
the molecule

£ = VI[E+ A+ B]If),,, . (6.34)

The subscript ps implies that the three-body state is only partially
symmetrized, the subscript j refers to the label of the third body (the
spectator index; we shall use the convention j =3) which is treated as
distinguishable. Equation (6.34) points the way to evaluating the sum over
all final states in eq. (6.3) without running in double-counting errors: to
generate all (symmetrized) final states just once we should sum over all

Table 6.5
Multiplication table for the group 32.

E A B K L M (applied first)
E E A B K L M
A A B E M K L
B B E A L M K
K K L M E A B
L L M K B E A
M M K L A B E
(applied

second)
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molecular states (which are symmetrized pair states) and over all relative
momenta between the molecule and the third atom. Note that this is in fact
one third of all classically distinguishable final states (there are three ways
to break up three bodies into a pair and a third body).

Using the group properties and the symmetry of T it is straightforward to
show that the transition matrix may be written as

(f|Tli) = V3, (fITli) . (6.35)

We are now in a position to evaluate eq. (6.3) by making the continuum
transition and obtain the equivalent of eq. (6.8) for three-body H
recombination

rh1h2h3 ’ (6.36a)
with

Thpp, =2 2 fdpqu P,(p)P,(9)

hy I,M;v,L .M,
(52) [ adns )P
% 2k’ dqhi;qhé?’lpﬁ(flﬂl)l . (6.36b)

Comparing with eq. (6.8), one notes that conservation of energy here leads
to more than one allowed value (one for each allowed h;) for the relative
energy E,, (and momentum q,,) of the third atom with respect to the
molecule in the final state:

ﬁzqiél(Zv) =E~(Emppten)=E,. (6.37)

6.1.3.2. Exchange recombination

As mentioned at the beginning of the previous section we persist in
neglecting the dipolar interaction, only accounting for direct and exchange
interactions between the three atoms. The T-operator for exchange
recombination is given by eq. (6.10a), where H=H,+ V> and H, =
K+ H,+ Hy,+V, [V,=V5*+ VX iis the spectator index; (i, j, k) =
(1,2, 3) or even permutation of (1, 2, 3)]. The perturbation V" enables the
transition and describes the interaction between the two H-atoms that

recombine and the third atom. Neglecting pure three-body forces,

V=V, +V,. (6.38)
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This is a questionable approximation for small separations of three
H-atoms but only dispensable at the expense of a considerable increase of
labor. The transition matrix becomes

T=Ty+T,+ Ty =V3lim in s (1(V; + V,) G, |i) (6.39)
n

Before we discuss the effect of the G, operator, we write out the initial
state in more detail

V3[i) =Vi[E + M] X [E + A + B]jh,h,h,; ps, q5) (6.40a)
= \/_%[E + M]{|h1h2h3§ P> q43) + |h3h1h2; P2 4o)
+ |h,hsh; p, q))) . (6.40b)

First consider the first term of eq. (6.40b). Our aim is to rewrite this term
in a form that enables us to evaluate T in eq. (6.39). The G, operator
distorts the initial-state wavefunction so as to account for the interaction
between the atoms. As the interactions depend on the relative electronic
spin states, we first decompose the spin state of the 1-2 pair in terms of the
|SMgIM,) representation (using table 6.4a). Then we couple the hyperfine
state of the third atom to obtain the total spin representation of the
three-body system, |SMS,IM,I;). Here S, and I, represent the total
electron and nuclear spin of the 1-2 pair. These quantum numbers have to
be added because the total spin depends on the sequence by which the
spins are coupled. The various states [SMS,IM,I.), i€(1,2,3), are
interrelated by Wigner 6 —j symbols. With the above decomposition
scheme, the first term of eq. (6.40b) is written as

> 2 |SMS3IM, Ly; ps, ;) s MsS,IM,L[h hyh,) . (6.41a)

S313 SMsIM;

Similarly, we also rewrite the final state [f) ,

2 EMOIM L v, L, M, ;) ., (SM{OIM, 1,001, M, , h3)

ps3 °
MgIM,

(6.41b)

For convenience we have summarized in table 6.6 the probability am-
plitudes (3MS;IM,L;|h h,h;) for projection of the initial spin state
|h,h,h,) on the § = 3 part of the total spin representation. Similarly the
projection amplitudes for the final spin states |00/,M 1y h;) ; are given in
table 6.7.

Partially symmetrizing eq. (6.41a) using VI[E + M], yields for the
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Decomposition of the hydrogen hyperfine three-body states |h h,h,) with respect to the total

spin representation |SMS,IM,1,). The states that contribute for T = 0K are indicated with

an asterisk. The symbols are defined as a = V172, 8 =V1/3, y=V273, ¢ =sin ¢ and

7 = cos 6; @ is defined in section 2.1. The + signs refer to the upper or lower three-body state
in the upper row. The decomposition is described in the text following eq. (6.41).

hlh2h3
cac cbd dcb bdc
S Mg S I M I, acc cca bed cdb dbe cee
M,+M,=0
i i o0 3 i o0 ,
1 -1 o In(n’ - &%) —&n in e
TR
i} -1 *inB *any FinB
3
3
i -4 Flny FanB Flny
3 -3
L -4 o} S0 le(n® - &) e’ le e’
1 _1 0*
2 2
1 i *iep xaey *ief
1 1 1
2 2
i 3
i Tley taf  Fiey
3 -4
i -3
by do
b -1 0 T inB *any =inB
bt
: 2, 2
é _é 138’ ~ &) - '] n(ny’-€BY) anBy anBy - inp® -—en’
L]
2 2
I T
i -3 ingy By -anf’® amy’ —iaBy 0
i -3
i -1 v} 1o t4eB *aey *4eB
1 -1o ,
2 2
LooLoar e[ip(nP - &) +n%y?] e(n’B’ - £?) aefy asfy -—1ep? —é'n
Lo
i 3 X
I leBy ~eBy —aey’ asp® ey O
Tt I
: -3
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Table 6.6 (cont’d)
hlh2h3
bad dba adb
S My S, I M, I abd bda dab
M, +M,=0
i 3 0 % 4o
i -4 0 ie
431
i -1 *agy +ieB
3 3
2 2
3 1
2 2
i -4 FaeB *iey
3 -3
i} -4 0 % 4o —in
i -3 o0
331 +4nB *any
i -1 1
3 3
2 2
i 3 Finy *anp
3 -1
2 2
3 —3
2 2
i 3 13 1o
i -1 0 Flep Facgy
CIRE I
3} -1 aeBy -1ep’ agBy
i 3
3 1 *
2 2
i -1 —aep’ ~ieBy aey’
i -3 "
P-4 1 3 300 Fany *inB
i1 -1 0
141t —amBy ing?® —anBy
1 -1 1‘
2 2
3 3 *
2 2 2 2
LI B any ~inBy —anf
i -1
3 —3 *
2 2




266

I.F. SILVERA AND J.T.M. WALRAVEN [Ch. 3, §6
Table 6.6 (cont’d)
h,h;h,
caa
S Mg S, I M, I aac aca aaa
M,+M,=0
i 4 0 4 4O
-1 0 en’ te(n® - &) e
i 11
Lot wies
PR
2 2
i -4 +iey
3 -1
1 -4 0 4 40 £'n ~in(n* - &%) —en’
1 _% 0*
2
i 11 FinB
i -11
3 3
g i iy
i -3
I 1 bt
i -10 Tiep
i i1
bo—1 1r e’ —€y?) e’y + 1B (P - €%)] €'
3 3 *
3 1
2 2
i -4 eBy —ieBy
3 -3
i -4 1 4 4o +inB
i -4 0
% % 1* T][EZBZ _ 1’272] 7][8272 _ %BZ(TIZ _ 82)] —51]2
1 =1 1*
o
g i —nBy inBy
_% *
i -3
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Table 6.6 (cont’d)
h,h,h,
daa cad deca adc
S Mg S, I M I aad ada acd cda dac
Mo+ M, =1
b0 b b om UMY
i -1o
b *aeny =4p tas’y tam’y
I -1
3 3
2 2 _ 2 2
i 4 FaenB iy *as’B *tan'B
3 -4
3 _3
2 2
-t ol 4o
-1 o
11
1 -1
3 3 tan Faen *aen
i
3 _1
2 2
3 _3
2 2
b1 o Faeny =B Fan'y Fae'y
1 _1 0
2 2
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Table 6.6 (cont’d)
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Table 6.6 (cont’d)
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Table 6.6 (cont’d)
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Table 6.6 (cont’d)
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Table 6.6 (cont’d)
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orbital part

(S515); pss q3>p53 = \/—%[[Py q;) + (—1)53”"-_1’37 7,)] - (6.42)

Hence, for S, + I, = even (odd), only even (odd) partial waves occur for
the relative orbital motion of the 1-2 pair.

KVS consider the T— 0 limit, where s-wave scattering is dominant. This
implies that only the even S, + I terms of eq. (6.41a) contribute. The
corresponding coefficients are labelled with an asterisk in table 6.6. As in
the case of Van der Waals recombination the time evolution of the spins
due to the hyperfine interaction is neglected during the collision (sudden
approximation, Wigner spin rule).

If the interaction of the 1-2 pair with particle three were purely of the
Van der Waals type only the singlet terms (S; =0) of eq. (6.41a) would
lead to recombination. KVS first pointed out that the triplet terms (S, = 1)
also contribute, as both the exchange and direct terms of the interaction
admix the singlet character in the 1-2 relative spin state required for
recombination. Following KVS, we use the term exchange recombination
for the process where direct and exchange forces between three H-atoms.
enable recombination.

The selection rules are obtained by observing that the direct and
exchange interactions cannot induce a change in the total spin or its
projection, nor do they affect the nuclear spin:

AS=AI=AL=0, AMg=AM,=AM,_ =0. (6.43)

With these selection rules the contribution of the first term of eq. (6.40b)
to the transition matrix becomes

TEEZ 22 ps3<%MSOI3; v, L, My, @3|V,G. |3 MS,15; ps, q3>ps3

iS5y MsIM,
X ps}(OOIBMI_-" hé' %MSOIMII3> ( %MSS3IM,I3|h1h2h3) ’ (6.44)

where we have suppressed the / and M, quantum numbers in the matrix
element. The operators V,, i € (1, 2), yield the singlet (V) or the triplet
(V) potential depending on the total electron spin S; of the pair i, where i
is again the spectator index. The singlet and triplet fractions are deter-
mined by transforming the electron-spin part of the initial state to the
i-subsystem using Wigner 6 — j symbols. We use the convention of Messiah
(1970) to find
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V.G |1 MsSsL55 Pss 45 ) pes (6.452)

1
=VG, ES: |3 MS.(S515); P> q3>ps3 [z
i 2

NI= N
Y \n
| S—

x (28, +1)"%(28, + 1)

Ss

= V?G+|%MSO(S313); P> q3>ps3 [ 0 ](253 + 1)”2

b= R
Nl— NI—=

S
+ VIG5 M1(S,15); Ps, 43) pes [ 13](2s3 +1)1723'2

NI— =
M= NI—

Analogously, we decompose the final state side of eq. (6.44)

11
l%MSOIs;vvLaML?qé>ps3=HMSO(OI3);U’L’ML7q£>pss\:i ? g]
2 2
1 : 3 30
+l§M51(OI3);v,L,ML,q3>p53[f f ]3“2_
r oz 1
(6.45b)
The relevant 6 — j symbols are
na St
A T ¥ 10 27 Ly 11 2’
1 1 1:| 1 [l 1 1] i
2 2 2 2
=5, =—, 6.46
[% 1ool72 1 1d76 (6.46)

where the s, refer to the electronic spins of the individual atoms.

Combining egs. (6.452) and (6.45b) we obtain the following expression for
the matrix element in eq. (6.44)

M= ps3< iM0L;v, L, M, ¢3|V:G, |31 MS, 155 ps, q3>ps3
= p53<(013); v, L,M,, q;lV;G+I(S3I3); P> q3>ps3

53]

1

- ps3<(013); v, L, M, q§|V?G+l(S3I3); P q3>ps3

1
x 3(28, + 1)”2[1
2

b= N—

1 1
N
x 328, + 1) [z Z 03], (6.47a)
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where we have suppressed the S and M quantum numbers. For S, = 0 this
becomes, in a straightforward symbolic notation,

M=3(Vi)+ 1V =(VP). (6.47)
Similarly, for §; =1 one obtains
M= V3V — W3V =W3(). (6.47¢)

One observes that the perturbation carries the signature of the direct
interaction if the recombining pair is in a relative singlet state while it bas
an exchange origin for S; = 1.

With the aid of eq. (6.47), eq. (6.44) may be drastically simplified to

TE=Z 2 (V,P)(OOI3M,3,h;I%MSOIM,Q)(%MSOIM,I3|h1h2h3)

i MsIM;

+2 2 W3(J,)(00LM, , b s MOIM, 1)

i MsIM;

x (LM1IM,L,|h,h,h,) (6.48a)
=z <V1P><OOI3MI3Ih1h2)6h3,h5

+2 2 1V3(J,)(00LM,, by s MOIM, 1)

i MgIM,
x (M 1IM,L[h,h,h;) . (6.48b)

The first line of eq. (6.48b) has the same signature as Van der Waals
recombination: singlet character has to be present in the 1-2 relative
wavefunction for recombination to proceed via the direct interaction with
the third body. The second line contains the feature contributed by KVS.
Atoms initially interacting via the triplet potential may pick up relative
singlet character by spin-exchange with an appropriate third H atom which
simultaneously can carry away the energy liberated in the recombination
process. If the three terms T, T, and Ty, corresponding to the three
terms of eq. (6.40b) add constructively and one assumes V" to be equally
efficient for recombination as V"¢ H-H-H recombination via the
direct channel alone will be 9x more efficient as H-H-He recombination.
We shall return to this point in section 6.1.5. Moreover, (V") =
3(V") + 1(V*) contains an average over the strongly attractive singlet
potential which is better suited to enable the large momentum transfer
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required for recombination (see the discussion concerning this point below
eq. 6.9). On the other hand, in view of the smaller reduced mass v in the
H—H-H case, the density of final states will be V2 smaller. Later in this
section we shall discuss examples of constructive and destructive interfer-
ence (aaa- and bbc-recombination, respectively, at T =0K).

We may further simplify eq. (6.48) by limiting ourselves to T=0K
where only those amplitudes contribute that are marked with an asterisk in
table 6.6. We consider recombination to o-H, and p-H, separately. For
recombination to para-H,, at T=0K,

T%™ = 2 (V7)(0000[h,h,)8,,, 1, » (6.49a)

for recombination to ortho-H, (T =0K)

7o = > > WB(J,)(001M by s M 0IM,1) (3 Mg1IM,h h,hs) .
i MsIM;
(6.49b)

Although the limitation to T=0K is convenient in view of the
discussion of the KVS theory, we stress the point that the GTB results
indicate that for temperatures in the experimental regime, in fact recom-
bination to the ortho state is dominant for the Van der Waals process while
it should be absent in the 7 = 0 K limit. Experimentally, recombination to
ortho-H, reflects itself in high magnetic field as the K, contribution to
second-order recombination (see section 5). This could well imply that also
in the H-H-H case, recombination to ortho-H, via the VP channel is
important for the interpretation of experiments.

KVS restrict their theory to T = 0K, where | p,, q,), | p,.4,) and | p;, ¢5)
become identical and T, T, and Ty are easily summed. Furthermore,
summing over all final spin states, eq. (6.36) may be brought into a form
which is the analogue of the T=0K limit of eq. (6.15).

For recombination to para-H,:

) [airk giv2y+vnyp.
(6.50a)

rv=1ing,2L+1) 2 (—"—2
v \27h

For recombination to ortho-H,:

v N[ R,
rv= %n3g1(2L+1)§L3<2Wﬁ2) qu = 15[+ (F
(6.50b)




278 LF. SILVERA AND J.T.M. WALRAVEN [Ch. 3, §6

where g, and g, are defined by

= > h,h,k,|{0000]hh,) + (0000|h,h,) + (0000|h;h,)|?,

h hzh;

(6.51a)

E hih, > [(AMIM|E + A+ Blhhh)>.  (6.51b)
hhsh

MSIM,

Just as for the f, in the case of Van der Waals recombination, we provide
explicit expressions for g, and g,. These expressions were obtained using
tables 6.4 and 6.6.

g =3[(3a>+36%+a% + a’d + é* + ¢d) sin® 20
+2(@éb + déd) cos® 26 + G%¢(2 cos 20 + sin” 9)?
+ G¢*(2 cos 20 —sin® 0)* + 2(dbd + ¢bd +2b%d +2d°b)],
(6.52a)

g = 3[(3@> +3¢% + % +a’d + é% + ¢*d)sin® 26
+2(d¢h + déd) cos® 26 + 4(4°%¢ + 4é*)(cos® 6 + sin® 6)

+2(dbd + ¢bd +2b%d +2d)] . (6.52b)

Unfortunately, the usefulness of eq. (6.52) is more restricted than that
of eq. (6.15). The latter enabled the rough extraction of the temperature
and field dependence of Van der Waals recombination. The former, at
most can give us roughly the field and temperature dependence of the
terms that do not vanish at T=0K.

So far we have not discussed the distortion of the orbital part of the initial
state due to the action of G,. As GTB, KVS choose for an approximate
solution. GTB used the impulse approximation, which has the advantage.
that the relative motion between the recombining pair and third-body is
treated fairly exact (to the level that three-body forces may be neglected)
but, unfortunately, completely ignores the strong distortion of the 1-2
motion due to the singlet potential. GTB also extracted the temperature
dependence from their theory. KVS properly distort the wavefunction of
the recombining pair but assume the distortion of the wavefunction to be
triplet-like with regard to the third-body, independent of the perturbation.
It is hard to assess the reliability of this approximation, but it clearly has
the advantage of reducing the numerical work. For this review we shall not
enter into a more detailed description of the orbital wavefunctions.
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As an example we discuss two special cases, aaa and bbc-recombination
in the T=0K limit.

(i) aaa-recombination. Here T, T , and T are identical and hence add
constructively. First, we consider recombination to para-H,. From the
selection rules of table 6.3, we see that the third body remains in the a-state
yielding p-H, + |a), with

T=3[(V?Y) + (V5 )](0000]aa) = 3en[(VT) + (V3)]

For recombination to the ortho state two channels exist, according to the
selection rules:
(1) o-H,(M,; =0) + |a):
T=3V3[{J,) + ();)][0010,2]3 303 —3 1)(3 ; 03 —3 1]aaa)
+(0010,a]5 ~3 0} 3 1)(} ~104 4 1]aaa)]
= 3V3(e'nB — en'B)(J1) + ()] = = 2V 3enB[(J;) + (1.)].-
(2) o-H,(M; =1) +[b):

T=3V3[(J;) + (J,)](0011,b]3 =305 31)(3 — 317 ; 1aaq)
= _%\/_3-57727[(]1> +{()].
Processes where the third body in the final state is a |c) or |d) state atom
only contribute to higher order in & and are hence negligible in high
magnetic field:
(3) 0-H,(M, =0) + [c).
T=3V3[(J,) + (J,)][(0010,c|3 303 —31)(3 3 0} — 7 1[aaa)
+(0010,¢]3 ~304 3 1)(} ~104 § 1]aaa)]
= V(B + e B)(J) + ()= 3V3eBI(J,) + ())].
(4) o-H,(M,=—-1) +|d).
T=3V3[(J,) + (1001 ~1,d]3 303~ 1)(4 § 14—} 1|aaa)
== 3V3&ny[(J,) + (I)].
(ii) bbc-recombination. According to the selection rules (table 6.3) we

expect, to first order in g, only the o-H,(M, = —1)+|b) final state to
contribute. Tables 6.6 and 6.7 show that this is in fact the only final state
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that contributes at 7 =0 K. However, this contribution also vanishes due
ortho

to destructive interference of T3, T and T9"°. We find the final
state 0-H,(M, = —1)+ |b) with probability

T=V3[{J)+(J,)]{001 -1,b|3 =313 —31)
X[(3 =308~ 3 1lbbe)+ (4~ 103 - 1 1fbeb)
+(3 —303 —3 1|cbb)]
= 1V3[—ny + anB + anB] =0.

We note that analogous reasoning leads to a zero bba-recombination rate
at T=0K. The relation to the rate equations is discussed in section 6.1.5.

6.1.4. Dipolar recombination

Thus far in discussing recombination we neglected the magnetic dipolar
interactions between the atoms. Although this approximation is often well
justified, it breaks down when the initial state lacks the singlet character.
Experimentally, applying a high magnetic field, the electronic polarization
may become essentially complete through preferential recombination of
a-state atoms (see section 6.1.2.1) which leaves a sample of atoms in the
b-state from which the singlet character is absent. Recombination can then
proceed in one of two ways: relaxation from the b-state to the a-state
followed by a—b recombination via the Van der Waals channel, or viaa -
direct bbb-recombination process. The weak dipolar interactions provide
the leading relaxation mechanism (see section 6.2). Kagan et al. (KVS
1981) pointed out that at high densities, a combined relaxation/recombin-
ation mechanism involving three hydrogen atoms (bbb-recombination),
should be the leading decay channel for H|{.

6.1.4.1. bb—He recombination

Before we embark on a discussion of the KVS process we first introduce
the dipolar interaction in the H-H-He problem to show that it may be
entirely neglected in this case. The dipolar interaction between the
electronic spins of two hydrogen atoms is given by

(A 4m)r Y2 f(S,, 8,) (6.53)

where the notation is defined in section 3 and r = r,,. The matrix elements
of eq. (6.53) are given in table 6.8 for the total spin representation of the
pair {|{SMIM,)}. One observes that eq. (6.53) does not induce the
triplet— singlet transitions required for recombination.
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Table 6.8

Matrix elements f(S,, S,) for the dipolar interaction
between electron spins V,, = (pA%74m)yir >f(S,, S,).
See section 3 for the definition of f(S,,S,). a=

VATSY ™ () c = V3aISY L (F); d=VerI5Y2X(P).

S M 00 11 10 1-1
00

11 a —c* d*
10 —c —2a c*
1-1 d c a

The case is different for the dipolar interaction between the proton spin
on one atom and the electron spin on another H-atom,

= (o 4m)r Ty, [ fs1, 8) + fli, 5,)] - (6.54)

For the notation we refer again to section 3, the matrix elements are given
in table 6.9. Here one term transforming as Y5(F), connects the fully

Table 6.9

Matrix elements of — [ f(s,, i,) + f(i,, 5,)] for the electron—proton contribution to the dipolar
interaction between two hydrogen atoms: V,, = —(;Loﬁz/47r)r_37€yp[f(s,, i,) + f(i,, s,)].
The symbols a, ¢ and d are as defined in table 6.8. For the definition of f(s,, i,), see section 3.

o 1 0 - 01 0 - 01 0 - 0 1 0 - M
o 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1
o 0 0 0 1111 0 000 - - - - M
o 0 o 0 1 1 1 1 1 1 1 1 1 1 1 1 s

S My, I M,

d ¢ a ¢ 2a —c* a —c*d* |0 0 0 O

-a c* —-d* 0o 0 1 1

c 2a —c* 0 0 1 0

—-d - —-a 0 0 1 -

—a ¢* —d* 1 1 0 O

d* —2a c¢* c* —d* 1 1 1 1

* c c* a —-d* i1 1 0

¢ 2a a —c* 1 1 1 -

¢ 2a —c* 1 06 0 O

c* c a c* —d* 1 0 1 1

2a -d a a -4*|1 0 1 O

—c -d —c a —c*|1 0 1

-d —-¢ —a 1 0 0

a ¢ a 2a —c* 1 - 1 1

-c —-d a - -c*|1 - 0 O

d -d —c -c -2all - 1 -
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aligned state |1 —11 —1) to the (para) singlet state [0000), and hence may
cause recombination. It is a kind of dipole-induced Van der Waals
recombination, where the dipolar interaction replaces the intra-atomic
hyperfine interaction.

Historically, it seemed quite logical to calculate this contribution of the
dipolar interaction to second-order recombination, as the v, y, terms were
found to play an important role in b— a magnetic relaxation. It was
thought that b—b-recombination could possibly explain a discrepancy of
order 50 between the experimental value for second-order decay of H{$
(see section 5) and the theoretical value based on relaxation alone.
However, for recombination one also has to account for the large
momentum mismatch between initial and final state. As we discussed in
section 6.1.2.1 of the present chapter, the H-He potential is not very
efficient in accommodating the momentum transfer. This suggests that
b—b-recombination would be less efficient than b— a relaxation. Alterna-
tively, instead of comparing with the relaxation channel we may also
compare the 1,7, term with the intra-atomic hyperfine interaction which is
presumed for Van der Waals recombination. Both processes then have the
momentum mismatch in common and the former is found to be much
weaker than the latter. At an inter-nuclear separation of 4 A, the Y., term
represents an energy of approximately 60 pK, three orders of magnitude
weaker than the hyperfine interaction. Moreover, the dipolar interaction
falls off rapidly with distance. Thus, one estimates b—b recombination to
be more than three orders of magnitude weaker than a—b recombination.
In turn, a—b relaxation is observed to be two to three orders of magnitude
smaller than a~b recombination.

Two independent unpublished calculations (Haftel 1985, Verhaar 1985)
dealing with recombination via this second-order channel exist. Both
calculations were done for the adsorbed state (b—b recombination on the
surface of “He). The results show b—b recombination to be a much slower
process than b—a relaxation. In both calculations uncertainties exist
concerning the treatment of the helium surface, but it is considered
unlikely that improvement of the theory on this point would change the
overall conclusion.

6.1.4.2. The KVS mechanism

We return to the original suggestion of KVS that at high densities of H|}
the dipolar interactions between three H-atoms give rise to the dominant
decay channel. As in the case of exchange recombination we divide the
three hydrogen atoms up into a recombining pair and a third body. The
dipolar interactions between the recombining atoms are neglected, using
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the argumentation presented in the previous subsection. This leaves the
dipolar interactions between the recombining pair and the third H-atom.
In principle, the third atom need not be an H-atom, but may also be a
magnetic impurity of some kind. KVS consider the high-field, T— 0 limit
and neglect the hyperfine interaction. Only three-body combinations of a-
and b-state atoms are considered.

The relations for the rate of third-order recombination (eq. 6.36) and for
the final-state relative energy (eq. 6.37) remain valid for the KVS process.
The three-body T-operator for the dipolar mechanism is given by eq.
(6.10a) where H=H,+ V> and Hy= K+ H, + V| +V;+ V3 [V, is the
triplet interaction between the particles observed by the spectator i]. The
perturbation is given by

Vi=ve+vye, (6.55)

and represents the dipolar interaction between the recombining pair 1-2
and the third atom. We split the initial state into three terms, using the
cyclic permutation operators E, A and B as in eq. (6.40) and project the
initial and final states on the total spin representation as in eq. (6.41). We
retain only terms of order 1, i.e., the hyperfine admixtures are neglected.
The results only hold for the high-field, low-temperature regime where
only the lowest two hyperfine states are populated (h,h,, h,E€a,b).
Using the same notation as in eq. (6.41), we decompose the initial states
(distorted by the interaction)

Ii) = |h1h2h3§ Ds» ‘13)
=> > 12 - 3 LUM,L; p,, q;)(3 =3 LIM,L|h;hsh,) (6.56a)

I3 IM;
and final states

|f>ps3 = ‘0013M137 v, L, M, ;hy q;)ps}

=S IMOIM 1550, L, My, 43) s

M,

x (3 MOIM,LJ00LM, , hi) s - (6.56b)

The relevant spin projection amplitudes (3 —3 1/M,L;|h,h;h;) and
($MOIM,L,|001,M, , hy) ., are given in tables 6.10 and 6.7, respectively.
The amplitudes corresponding to nonvanishing terms at T=0K (even
values of S, + I,) are indicated with an asterisk in table 6.10. Note that for
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Table 6.10

Decomposition of the hydrogen hyperfine three-body states with respect to the total spin
representation |SMS;IM,I,}. The states that contribute for T= 0K are indicated with an
asterisk. The table covers a restricted set of h;h,h,. The symbols are & =V/1, 8 =1/1 and

y=V3.
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T—0 only terms with /;=1 remain, i.e., at low temperature the KVS
process only leads to ortho-H, molecular states. For the final state, one
may distinguish two important cases corresponding to recombination
processes in which one or two electron spins are flipped:

M, = —4: Single spin-flip process (h;€a, b),
1
2

M, = }: Double spin-flip process (h; Ec, d). (6.56c)

An expression for the transition matrix must satisfy the selection rules
Al= AL, =0, AM; =AM, =0, (6.57)

reflecting the fact that the dipolar interaction between the electronic spins
does not affect the nuclear spins in the recombination process. Although
the selection rules are less restrictive than in the case of exchange
recombination (eq. 6.43), the expressions for T, T, and T may be kept
relatively simple as we restrict ourselves to the high-field, T=0K regime
and only consider |a) and |b) initial states

T.= 2 2 ps}(%MSO]‘; v,L,M,, q;lvfdG+ $-311; py, q3>ps3

i IM,
X {001 M hi| i M O0IM,1)(3 —3 1IM,1|h h,h;) . (6.58)
Here the quantum numbers within the matrix element are defined by
ps3<SIMS’S£I3; v, L, M, @G|V G |SM S, 135 ps, 430 ps3 -

To evaluate the matrix element, we transform the initial state from
spectator 3 to spectator i:

V?dG+l% - % 11, p37 q3>ps3

1 1
I
=V?dG+E—|% - %Si(ll);p3,q3)ps3[i i S]V?(ZS,+1)1/2
S; 2 2 i
=V{¥G,[3 -3 1011); 5, 45) pss - (6.592)

This reflects the trivial result that three aligned spins may only be split up in
spin-aligned pairs. The relevant 6 — j symbols are:

lll:l 1 [111]

2 2 2 2

=—, =0. .59
HESH Al S e
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Similarly, one has to transform the spin part of the final state to the
perspective of the spectator i. For this, eq. (6.45b) remains valid. We
substitute eq. (6.59) and eq. (6.45b) into eq. (6.58) and use the property
that the dipolar interaction (eq. 6.53) cannot induce singlet—triplet transi-
tions as discussed in the previous section and as may be read from table
6.8. This yields

Te=2 2 ,o{3Ms1(01); v, L, M, ¢4lVEG, |3 - 31(11); by, €5 s

i IM;
X Z ps3<001M13’ héIEMSOIMﬂ)(% - %11M,1[h1h2h3) :
(6.60)

The quantum numbers in the matrix element are defined by
ps3<S,MS’Si(SZ;I3); v, L, M,, qé!V?dG+|SMsSi(Ssls)§ Ps q3>ps3 ’

for which we shall use the abbreviated notation (M|V{?|—32). To
evaluate the matrix element we decompose the spin part in the
{|S;Mgs,m, )} representation, where s, is the electron spin of the spectator
i

|SMyS,) = 2 2 |S,Mg im, ) (S, Mg km, |SM,S,) . (6.61)

SiMs; Ms;

The projection amplitudes (S, MS sm, |SM S,) are summarlzed in table
6.11. In this new representation the matrix elements of V are readily

Table 6.11

Decomposition of the total election spin representation |SM,S;) with respect to the partially
symmetrized spin states [S,.Msim:i)ps,.. Here 8 =V/1and y=1/3.
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evaluated using table 6.8. We obtain for the single spin-flip process
(=3Ivi-3)

Here 7, = £ in the notation of fig. 6.2 and the quantization axis is the
direction of the applied magnetic field. In the transition, angular momen-
tum is transferred from the spin system to the orbital system. Similarly for

the double spin-flip process
AV = 1) =V (ph4m)y2(6miS) *(YT(F)/rl) . (6.620)

~V (k™ 4m)y2(37/5) (Y (7)) Ir]) . (6.62a)

Thus, as far as the spin part is concerned, the transition amplitude for the
double spin-flip process is twice as large as that for the single spin-flip
process. This leads to a factor 4 difference in the transition rate.

As in the case of exchange recombination, KVS evaluated their theory in
the T'= 0K limit, where the unperturbed orbital wavefunction is invariant
under permutation of the atoms {|p,, ¢,) =|p,, 4;,) =|p;» p;), and the
states are meant to be undistorted] and the sum T + T, + T is obtained
by simply adding the spin parts. Squaring the matrix element and summing
over all final spin states, the transition rate may be compactly expressed
(note the absence of the thermal average which arises from the well-
behaved T=0K limit of the initial-state orbital wavefunction, see sec-
tion (6.2)

TV=—tnle, 3 3(w/2mh®)(uhlam)i(nl5)

v.L .My

«Jaa(3) o[ [S (i

|

(6.63)

2
RS

where

e,= > hhh, > |(3 —31IMIA|E+ A+ Blhh,h,)>.  (6.64a)

hihahs M,

An explicit expression for e, in terms of 4 and b is obtained using table
6.10,

e, =9[> +d’ +ab>+b’]. (6.64b)
In writing eq. (6.63) and eq. (6.64), we have lost the information on the

final hyperfine state of the third body. To retrieve this information one has
to compare the probabilities [(001M,, hi|3 M 0IM,1) |*> for the various
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processes, as may be seen from eq. (6.60). Using table 6.7, we have
calculated these probabilities for both single (M= —3%) and double
(M, = + 1) spin-flip process in the high-field, T = 0 K limit. The results are
listed in table 6.12. The I and M, quantum numbers to be used are obtained
for any set h;h,h, from the projection on the total spin representation
(table 6.10).

A point of great practical importance in view of the stability of H|{ at
high density is the magnetic field dependence of dipolar recombination.
Comparing with eq. (6.15) or eq. (6.50) we note that in eq. (6.63) an
explicit field dependence is absent, yet the calculated rate for dipolar
recombination between three H-atoms in the b-state shows a pronounced
field dependence as illustrated in fig. 6.4. The curves shown were obtained
by de Goey and Verhaar (1984) and represent the single and double
spin-flip contributions for recombination to the v =14, L =3 molecular
final state. In contrast to Van der Waals or exchange recombination, this
field dependence does not arise from the spin part of the matrix elements
but originates in the momentum mismatch and density of final states
considerations discussed in section 6.1.2.1. We illustrate this point using
eq. (6.37) and fig. (6.5). The final-state relative wave vector is given by

9n;y = [(2V)1/2/h][8h1 T ey, T &y, T Eny T E.1'"”, (6.65)

where ¢, is the Zeeman energy of hyperfine state |h,). For the single
spin-flip process (E' in fig. 6.5)

9n; = [(ZV)I/Z/ﬁ][IEuL, - 2.‘-"BB]”2 . (6.66a)

This implies a cut-off field B=|E,,|/(2u;) beyond which thermal acti-

Table 6.12

Relative probabilities of various dipolar recombination channels. Both the single and double

spin-flip cases are presented. The table is valid for the high-field, T = 0 K limit. The hyperfine

states of the incoming atoms are given on the left. The molecular final states are indicated by

the nuclear spin projection M, (only ortho final states are allowed at T=0K). The final
hyperfine state of the third body is given in parentheses.

Double spin-flip Single spin-flip
h,h,h, M, =1 M, =0 M, =-1 M =1 M,=0 M, =-1
aaa 1(d) 1(a)
aab 1) 3(d) 1(b) f(a)
abb HO! 3(d) 3(b) i(a)

bbb 10) 1(b)
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-double spin flip process

final state H,{14,3)

- single spin flip process

L0

0 0 20 30
B (TESLA)

Fig. 6.4. Theoretical results for the Kagan process in the volume. The single and double
spin-flip contributions to the volume rate K, are shown separately.

E=-3uB -

!
b

V=14 J=3 -

Y yu=3)

Fig. 6.5. Diagram showing the energy available for the relative motion of the third atom with
respect to the molecule for both the single (E’) and double (E") spin-flip process.
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vation is required for recombination to the H,(v, L) final state. For the
double spin-flip process (E” in fig. 6.5)

qw; =[(2v) R][|E, .| — 4psB]'"?, (6.66b)

corresponding to a cut-off field which is a factor 2 lower. For the H,(14,3)
molecular final state, the cut-off fields are B=48 T (single spin-flip) and
B =24T (double spin-flip), as may be seen in fig. 6.4. The maxima in this
figure are due to two competing effects. With growing field the initial- and
final-state momenta are better matched while the density of final states
(proportional to q,., see eq. 6.8) is decreasing, becoming zero at the
cut-off field. Note that the maximum in the double spin-flip curve is four
times higher than the maximum for the single spin-flip case. This difference
is due to the difference in spin matrix elements for the two channels (eq.
6.62) and appears explicitly in eq. (6.63). A plot similar to fig. 6.4 could be
made for the H,(14,1) molecular final state. For this channel cut-offs
would be found at B=68T and B =136T. The maxima would be lower
than for the H,(14,3) channel in view of the difference in rotational
degeneracy of the final state (2L +1=3 versus 2L +1=7). We note
the latest experimental results for the vibrational-rotational levels
(Dabrowsky 1984) imply a cut-off field of 26.85 T for recombination to the
H,(14,3) molecular state via the double spin-flip process.

The results quoted in the previous paragraph were obtained for bbb-
recombination in the T=0K limit. It requires little argument that the
qualitative aspects presented remain valid for 7 > 0. It is therefore unlikely
that the field dependence would depend strongly on temperature. How-
ever, if some a-state is present in the gas, recombination to para-H, final
states becomes possible at higher temperatures. The appearance of this
new channel will affect the overall field dependence in a qualitative
manner. ’

6.1.4.3. The KVS mechanism on the surface

It was first pointed out by KVS that three H-atoms are required on a
surface for direct recombination of H|3}. These authors estimated the
surface rate using a scaling argument in which the pair-correlation between
the atoms on the surface is assumed to be identical to that in the bulk. Such
a quasi-bulk theory in a good ansatz, in particular if the bound-state
wavefunction on the surface has a wide extent as is the case for H on ‘He
(see fig. 4.1). The quasi-bulk model is discussed in some detail by Kagan et
al. (1982) and implies the conservation of essentially the complete
phenomenology discussed in the previous paragraphs when changing from
bulk- to surface-dipolar recombination. Thus, the dominant molecular
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final state is H,(14,3) and the matrix elements for the double spin-flip
process dominate by a factor four over the single spin-flip process.

A more detailed analysis of the KVS dipole mechanism for bbb-
recombination on the surface of *He was made by de Goey et al. (1984)
who were interested in the limitations of the quasi-bulk model. On the
surface one deals with a very anisotropic situation. Only the component of
the momentum parallel to the surface is conserved; similarly, only the
normal components of the angular momentum vector. As a result, in a
partial wave analysis of surface scattering, the surface normal is the natural
choice for the quantization axis. In contrast, the spin system is quantized
with respect to the direction of the applied magnetic field. As the dipolar
recombination mechanism involves the transfer of angular momentum
from the spin system to the orbital system the above considerations lead to
an intrinsic anisotropy of surface dipolar recombination with respect to the
angle between magnetic field and surface normal. Such an anisotropy is
lost when using the scaling argument. '

De Goey et al. (1984) applied a “23-dimensional” (21-dim) model,
used earlier by Ahn et al. (1982) for a calculation of the surface dipolar
relaxation rate (see section 6.2), to describe the relative motion of the
H-atoms on the He surface. The model was found to agree on a 30% level
with a full three-dimensional description of the surface relaxation. In the
21.dim model, the b-b relative wavefunction ¢,(p) consists of a 2-
dimensional plane-wave exp(ik - p), distorted near the scattering center by
the triplet interaction averaged over the z-motion of the atoms. The full
initial state is written as

|bbb; ps, g5) = ¢0(ZI)¢0(22)¢0(Z3)11/;3(§3)([/;3(1)3)|bbb) ’ (6.67)

where the ¢,(z) represent single-atom bound-state wavefunctions of the
type shown in fig. 4.1, the p, and & are defined as in fig. 6.2, be it that the
symbols now represent two-dimensional vectors in the plane of the surface.
As for bulk bbb-recombination the two-dimensional vectors ¢; and
represent either p, and §, or p, and £, depending on the dipolar interaction
under consideration (V¢ or V3¢, respectively). This extremely useful
approximation was first introduced by KVS in relation to bulk exchange
and dipolar recombination, and amounts to the neglect of the distortion of
the wavefunction due to the third atom when considering the interaction of
the remaining pair.

For the final state the same wavefunction is used as the bulk bbb-
recombination (eq. 6.56b). This choice may be unexpected at first sight.
We therefore deviate a bit and compare the role of the adsorption potential
in dipolar and Van der Waals recombination mechanisms on the surface. In
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the latter case the potential not only serves to confine the initial state
wavefunction to the surface, but also enables the momentum transfer
required for recombination. Hence the molecule has to desorb. On the
contrary, in the surface KVS mechanism, in principle, the potential only
serves the confinement role. Since the interaction with the third H-atom
may also account for the momentum transfer, the 3BCM can remain on the
surface and the final state particles do not necessarily have to desorb. The
approximation that the 3BCM remains on the surface is reasonable, in
particular for low magnetic fields where up to 73 K (see fig. 6.1) is available
for the relative H-H, motion so that one of the final-state particles can
enter the bulk of the He liquid, while the other particle is desorbing. In
fact, this approximation, adopted both by Kagan et al. and de Goey et al.,
amounts to a complete neglect of the He surface in the final state, and the
bulk wavefunction may be used.

In high magnetic fields, the complete neglect of the He surface is much
less realistic. This triggered de Goey et al. to investigate the case where the
wave associated with the relative H-H, motion, expanding around the
3BCM, reflects elastically from the surface. However, this approach did
not lead to a significantly different qualitative behavior, but only to modest
quantitative differences of order 10% in the overall rates.

The effects of the anisotropy may be very pronounced. Lagendijk (1982)
pointed out that in the case of surface dipolar relaxation the relaxation rate
can be made to vanish by orientating the magnetic field along the surface
normal. This will be discussed in some detail in section 6.2 of this chapter.
For surface dipolar recombination the effects are less pronounced. This is
due to the desorption of the final-state particles.

To calculate the bbb-recombination rate on the surface, an expression of
the type given in eq. (6.36) may be used. For the quasi-bulk model used by
Kagan et al. (1982), explicit thermal averaging may be avoided by working
in the T =0 K limit. This leads to an expression quite similar to eq. (6.63).
In the 25-dimensional model such a simplification is not feasible due to the
logarithmic nature of the relative wavefunction ,(p). We return to this
2-dimensional pathology in section 6.2. Hence, de Goey et al. were forced
to do the thermal average over the initial-state wavefunction and found the
rate to increase roughly by a factor of 2 over the temperature range
0.2-0.6 K. It may be useful to point out that this does not imply that the
full temperature dependence was extracted. In fact, the calculation carries
a strong 7 = 0 K signature since only s-wave scattering was considered and
the (unperturbed) incoming orbital wavefunction was taken to be invariant
under permutation of the atoms as was done in deriving eq. (6.63).

The theoretical results of de Goey et al. may be expressed as
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Kin=3 2 3 AuBIPos0), (6.:68)

where P, is a Legendre polynomial and 6 is the angle between B and the
surface normal. The coefficients A, are shown in fig. 6.6, and display a
behavior which is quite similar to that of fig. 6.4. For 8 =0 the calculated
rate is K, = 6.5 %10 % cm* s~ for B =7.6 T. The experimental value of
Hess et al. (1984) is an order of magnitude larger, K, =5.3X
10"* cm®* s, moreover the rate was found to drop slightly with growing
field. Hence, it is quite possible that yet something else is going on at these
very high surface densities.

A possible explanation for the discrepancy (Haftel 1985, Verhaar 1985)
could be a combined process of three-body dipolar relaxation and Van der
Waals recombination, which we briefly compare with the KVS process to
conclude this section. In the KVS process both the singlet admixture and
the momentum transfer associated with the recombination is enabled by
the presence of a third H-atom. In the above mentioned combined process

0.3

0.2+

An[10-21' cml'/sec]

B[ Teslal

Fig. 6.6. The rate constant for surface dipolar recombination as a function of magnetic field.
For the definition of the A, see the text.
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the singlet character is admixed by the passage of a third H-atom, but the
momentum transfer is realized by the molecule—surface interaction as in
the case of surface Van der Waals recombination. To our knowledge no
other suggestions exist in the current literature that may explain this
discrepancy.

6.1.5. Relationship to phenomenological experimental rates

In the coming section we wish to bridge the gap between the rather formal
theoretical discussion of the sections 6.1.3 and 6.1.4 and the rate equations
which are used for analyzing the experiments. The procedure is more
involved than that of section 6.1.2.3, where we gave some examples for
writing down rate equations for second-order processes. For third-order
processes we not only have to account for the loss of two atoms per
recombination event, but also keep track of what happens with the spins on
the third body.

We first consider the example of aaa-recombination via the exchange
process in the volume for the high field, T=0K limit, an example
considered before in some detail at the end of section 6.1.3.1. The overall
recombination rate is written down in terms of I, , using eq. (6.36),

NIV=-2I'lV=-1aI" . (6.69a)

aaa

In terms of a simple rate equation we write

NIV==-2K, .a . (6.69b)
Comparing we find

Ko = ¢ hea - (6.69¢)

Along the same lines of reasoning this result may be readily generalized to

Kh1h|h1 = 6‘r'h,hlhl )
Khlhzhz = %Chlhzhz ’ hl #h, (670)
Kh1h2h3=Fh|h2h3’ hl #hz;hl ¢h3;h2#h3

We next look at the recombination probabilities for the various aaa-
channels:




Ch. 3, §6] SPIN-POLARIZED ATOMIC HYDROGEN 295

— 2p+para
aaa—p-H, +a, I=9eT {ivar »
_ .— 9 2portho
aaa— O-HZ(M, =0)+a, I,=q15eT piazs
_ 9 2portho
aaa—o-H,(M,=1)+b, I =3eT  yins-

here I, I, and I} are the partial contributions of the processes considered
for the rate I',_, (see eq. 6.36) and the I'°:% | |, etc., are the factors due to

the overlap of the orbital parts alone. Assuming the volume, V, to be time
independent, we obtain

d=—Q+ &N, a°, b=+1¢r,.a, (6.71)
where
9 ara ortho 9 9 !
‘fz g[g(rgrbital/ror:i‘tal) + 'E + g:|

represents the fraction of recombination events in which the third body
changes hyperfine state. Thus aaa-recombination gives rise to a source
term in the rate equation for the b-state, with the result

d=-(2+&)K,a’, b=+EK,d . (6.72)

We estimate ¢= %, using the KVS result that I'’¥% < T = Any
three-body process may lead to source terms of the kind that appear in eq.
(6.72). The importance of these source terms depends on the details of the
process considered, hence, general rules cannot be given here. Later in this
section we shall return to these source terms when discussing the example
of dipolar recombination. First, however, we compare the K, ,, for exchange
recombination with the rate constant K ,,;;. for Van der Waals recombin-
ation to obtain information about the difference in recombination efficien-
cy when one replaces the helium atom by a third H-atom. For this purpose
we somewhat crudely assume I' ...t = I oroicars = 1 orbitar.3» aitd add the
rates for the three channels for aaa-recombination

K

=0+ & + 31T (6.73)

a orbital -

This result is comparedrwith a similar expression for K _,,,., derived by
using eq. (6.27) and eq. (6.14),

KaaHe = %Ez‘rorbital - (674)

Hence K,,, =3K and we conclude that aaa-collisions are ~9Xx more

aaHe
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efficient than aaHe-collisions. The additional factor 3 arises because for
a = He there are 3X more aaHe triples in a H-He mixture than in a pure
a-state gas (note that for the aaa-process, the total gas density is a, whereas
for aaHe it is a + ny, ). The K,,, efficiency may deviate significantly from
the above result, as determined by the details of the orbital integrals.

To conclude this section we present the rate equations associated with
the dipolar recombination terms included in (6.64b). The equations were
derived using table 6.12

i=—-Q2+ &R, d=+ER,,
b=—(2+&)R,, ¢=+¢€R,, (6.75a)

where

s J— 3 2 2 1 2
Ra - Kaaaa + §Kaaba b+ jKabbab ’

5 3 2 2
R,=K,,b” + 3K, .ab+ 35K, ab°.

The rate of recombination events is given by R, + R, ; ¢ is the fraction of
events that proceed via the double spin-flip process. From eq. (6.63) one
concludes that K,, = K, = K i, = Kpp-

In the limit that the a-state density vanishes eq. (6.75a) reduces to
b=—Q2+&) Kb’ ,  ¢=EKyb'. (6.75b)

When the c-state atoms have a larger probability to recombine than to
relax back to the b-state the total loss of particles is given by

h=-2(1+ &K, n(=—-Ln"), (n=b).

The symbol L has been used to characterize the rate of the KVS process in
the literature. From the above discussion it will be clear that accurate
experimental information concerning the KVS process may only be
obtained if the state of polarization and the efficiency of the various
relaxation channels are well-known.

6.2. RELAXATION

The wealth of recombination processes discussed in section 6.1 is by itself
not sufficient to estimate the stability of a gas of hydrogen atoms at low
temperature. A key ingredient is missing as long as the occupation of the
various hyperfine levels is unknown. To obtain this information the various
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spin-relaxation mechanisms have to be included in the rate equations.
Fortunately, from the abundance of relaxation channels at our disposal a
rather restricted set appears to be relevant to our problem. In low field,
spin-exchange is dominant, whereas in high magnetic fields dipolar
processes govern the physics of relaxation. Moreover, at least for the
currently accessible density regime, only two-body relaxation mechanisms
come into play. This has led us to divide section 6.2 of this chapter into three
subsections. First we give an introduction, comparing the particularities of
three-dimensional and two-dimensional scattering as far as is relevant to
the relaxation problem. The next two subsections deal with spin-exchange
and dipolar relaxation, and we also make the link with the phenomenologi-
cal rate equations.

6.2.1. Introduction—Volume and surface processes

For the relaxation problem we are interested in the transition rates
between the various hyperfine levels. The total rate of relaxation events is
given by eq. (6.3), where |i) and |f) now represent symmetrized two-body
initial and final states, respectively. P; is the probability that an initial
pair-state is occupied and (f|T|i) is the two-body T-matrix. Momentum
conservation is satisfied implicitly by expressing |i) and [f) in two-body
center of mass (2BCM) system

li) = |hhy; k), If) = |hihys k') . (6.76)

The initial state |i) represents a pair of H-atoms in hyperfine states h, and
h,, moving with relative momentum k. The final state |f) is defined
analogously. The probability P; is normalized to the total number of H-H
pairs, analogous to eq. (6.5),

i |hihosk

- Z Plhxhz k)
|hyhy;k)
= 1IN} g hih, 2 P,(p)=iN%, (6.77)
1h2 4
with
2 h=1, hh,=1, 2P, (k)=1,
h hihy k
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P_ (k) represents a Boltzmann momentum distribution (eq. 6.6) and
w = $my, is the reduced mass of the pair. For some remarks concerning the
use of symmetrized versus nonsymmetrized states, the reader is referred to
the discussion of eq. (6.5).

With the usual continuum transition X ,— [V/ (27)°] [ dk and integrating
over all final k (=|k|) states, the energy 8 function disappears and eq. (6.3)
becomes

IiV=4n*2 hh,ly,, s (6.78a)
hhs :
with
1
F A F ~—hihj
bih, 2 &, hiha—hihs
Fupens= | kP 0(525) [k 2 kiarinr . (o7s0)

Here, n is the bulk density of the H gas, 7:’ denotes the unit vector
corresponding to k' and we evaluated the three-dimensional den51ty of
final states p,(E) = u#ik/(27)’ for the momentum k = k’. The factor  in
eq. (6.78b) serves to assure that the symmetrized final states contribute
just once in the summation. Energy conservation is satisfied if

#’k'*l(2u)=E,—E,,— E,,=E'=0.
For k<k’, the process is thresholdless; for k> k' it is (thermally)

activated (see also the discussion below eq. 6.9). The transition rate is
related to an energy-dependent cross section o(E) via

h
Ly pysning = 47 — fdk k’P ' (K) O 4 oy (K)

l_)< ) f dE E exp(—E/kT)o . niny(E)
=U0p, p,>hins » (6.78¢c)

where E = #*%k*/(2u) and b = (8kT/mw)"'% The ¥ and O b, h,—hin; TEPTESENL
thermally averaged quantities. AE is the activation threshold (AE = 0).
The cross section is defined as

1 w 2k h y )
om0 = 1= (55) S [ak [akyaTior.  6789)
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Analogously, one derives the total transition rate on the surface in a
two-dimensional treatment

riA=1io" 2 hh,Ty,,, (6.792)

hih,

with

ST
hlhz E o hhz—>hih§7

Typonins = f dk P, (k) % (2ma*)" fdlé' ICE T (6.79b)

where o is the surface density of H and k and k' refer to two-dimensional
vectors in the plane of the surface. The two-dimensional density of
momentum states is a constant, p,(E’') = u/ 27k’

The transition rate is related to an energy-dependent cross length via

27h
Pt = | AP, (a0

2
1/2 (kT)

| AEEY ()

=v

= DA hyohihs » (6.79¢)

where E = #%k"2u; 0 = (wkT/ 21)'"% The cross length is defined as

1 14
)‘h,hz—mihg(k) iy <27rh ) fdk fdk

The various two-body relaxation processes may be described with eq.
(6.78) or eq. (6.79) as they only differ in the choice of the T-operator.
Here we do not enter in the details of the evaluation of the matrix
elements, which is left for the coming sections, but rather discuss some
fundamental differences between two-dimensional and three-dimensional
pair wavefunctions when the distortion due to the interatomic potential is
taken into account. Such wavefunctions are needed for calculations within
the distorted wave Born approximation (DWBA), which is often required
to obtain accurate results.

We first consider scattering between two H-atoms in free space,
interacting via the central potential V(r), which may be the singlet or
triplet potential. Since V(r) is short-ranged and well-behaved, the solution

D)2 (6.79d)
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to the three-dimensional Schrodinger equation for the relative motion of
the two atoms may be expressed in terms of a partial wave expansion
(Messiah 1970)

Eo(r)= %T 12 i'e*™F (k, )YT*(k)YT(F) . (6.80a)

Here k and r are the relative wave-vector and position, / and m = m, are
the quantum numbers of the orbital angular momentum of the pair,
Y7 *(k) and Y]'(r) are spherical harmonics describing the angular depend-
ence of the wavefunction in terms of the directions of k and r with respect
to an appropriate quantization axis, and F,(k, r) is related to the distorted
radial wavefunction (1/r)y,(k, r) via

y(k, )= QI+ 1)i' e*™F(k, r)/k . (6.80b)
The phase shift 7, is defined by the asymptotic behavior of F,(k, r).

F(k, r)~sin(kr — 3lm +m;), r—o, (6.80c)
1 1 2
k cotan ny(k) = p + 5 r.k°. (6.80d)

Here r, is the effective range of the potential and a the s-wave scattering
length [for H-atoms interacting via the triplet potential @ = 1.33 g, and
r, =323 g, (Friend and Etters 1980, Uang and Stwalley 1980a)]. For
vanishing potential the phase shift vanishes (n,—0) and eq. (6.80a)
changes continuously into the partial wave expansion of a plane wave,
while F(k, r)/kr approaches the Bessel function j,(kr), as may be seen
from the radial Schrodinger equation

[d>dr’ — Il +1)/r* = U@r) + K]y, (k, r) =0, (6.81)

where U(r).= (2u/A*)V(r) and k* = (2u/#°)E. The second term in eq.
(6.81) is the effective centrifugal barrier which is illustrated in fig. 3.2.

Also the /=0, k—0 limit of eq. (6.80a) is well-behaved in three
dimensions. If we substitute lim, 7, =ka into eq. (6.80c) we find
yi(k, r)~(1/k)sin k(r + a) ~ (r + a) for r>r, and y,(k, r) becomes k-
independent: g

&= % yo(r) (for small values of k) . (6.82)

Here y,(r) is the /=0, k =0 solution of eq. (6.81). This is particularly
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useful in the context of this section as it enables rapid estimates of
processes by taking the T— 0 limit for the relative motion, thus avoiding
elaborate thermal averaging. This approach has been followed quite
impressively by Kagan et al. (KVS 1981) in their exploratory study of
many decay processes in H.

Scattering of two H-atoms bound to a surface of liquid helium is quite
different. Although for a single H-atom on a perfectly flat surface the
motions parallel and normal to the surface are decoupled, such a
simplifying feature is absent, at least in principle, for interacting atoms
where both degrees of freedom are coupled via the interatomic potential
V(r). Hence, in principle, scattering on a surface is a highly anisotropic
three-dimensional problem. Fortunately, in practice, a three-dimensional
analysis is not required since the characteristic times for the events in which
we are interested are much longer than the oscillation time of the
bound-state so that it is sufficient to work with a quasi-two-dimensional
approach and average quantities of interest over the bound-state
wavefunction. This last approximation is called the 23-dimensional ap-
proach by van den Eijnde et al. (1983), who compared the three-
dimensional approach with the 23-dimensional approach for the case of
nuclear dipolar relaxation on a He-surface.

To derive the radial Schrodinger equation for the 23 -dimensional case,
the three-dimensional wavefunction for the surface problem F,,(p, z, z,)
is approximated by ¢y(z,)¢:(z,)y..(p) exp(imd), where ¢y(z) is the
bound-state wavefunction, real and normalized to unity (see fig. 4.1), and
p is the relative position vector in the plane of the surface. Then the
three-dimensional radial equation reduces to

[(8/9p™) + §(1 = 4m™) Ip* = U(p, 21, 2,) = 2U, + K’} ¢y(21) 6(22)Ym(P)
=0. (6.83)

U, is related to the surface adsorption energy through U, = 2u/%%)e,.
Multiplying on the left by ¢,(z,)$,(z,) and integrating over z, and z, one
arrives at the 25-dimensional radial equation

[(d*/dp?) + (1~ 4m®) Ip* — U(p) + k’1y,,(p) =0. (6.84a)
Note that the zero of energy has been shifted for convenience; further,

U(o)= [ dz, [ dz, 93(2,)03z)UCp, 21, 2,) (6.84b)

The 21-dimensional model was first applied to the H-H problem on the
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He surface by Edwards and Mantz (1980) in their mean-field estimate of ¢,
as a function of the H coverage (see section 9). Further simplifying eq.
(6.84a) by replacing U(p) by U,5(p) = U(p, 0, 0), one obtains the pure
two-dimensional limit for the radial equation.

In contrast to the three-dimensional case, the 23-dimensional (or two
dimensional) case has not such a nice limiting behavior for T— 0 K. This is
discussed in detail by Verhaar et al. (1984, 1985). First of all notice that for
m =0 the centrifugal “barrier” is attractive, thus increasing the binding
forces between the atoms. For U(p) =0, eq. (6.84a) is perfectly well-
behaved and the solution consists of cylindrical Bessel functions. However,
for U(p)# 0 the phase-shift is given by

2 1
cotan n,(k) = p (v +log 3ka) + 7 r’k’, (6.85)

where a and r, are the two-dimensional scattering length and effective
range, respectively, and y=0.577215665... is Euler’s constant [for
H-atoms interacting via the triplet potential a=2.3 4, and r,=14.3 g,
(Verhaar et al. 1984, 1985)]. Equation (6.85) is plotted in fig. 6.7 along
with approximate expressions for 7,. Although it is encouraging that the
effective range theory may be carried over to two dimensions, its use is
more involved in view of the logarithmic dependence on k (and a) of the
phase shift for k— 0. In practice, this implies that a vanishingly weak

o8-
o7  &(k) Ll T
06+
05k
O4t7 DWBA O(k)
........... -YT/log ka
o3 A ('v+log1/2 ka)
ool ——— _— arctan {—%TEI('YHOQ% kal}
E/k K
o1t 5 W
i ] | L I ] 1 1 i ]
0 01 0.2 0.3 04 05

Fig. 6.7. The triplet phase shift as a function of the relative energy of two H-atoms for the
two-dimensional scattering model.
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potential may lead to large phase shifts and that in two dimensions thermal
averaging cannot be avoided even for s-wave scattering in the 77— 0 K limit.

6.2.2. Spin-exchange relaxation

In zero magnetic field spin-exchange is known to be the dominant
relaxation channel. It has been extensively studied in relation to experi-
ments with the atomic hydrogen MASER. The classic reference for
spin-exchange scattering is the paper by Balling et al. (1964). Indistin-
guishability effects have been discussed in detail by Pinard and Lalo€
(1980). Berlinsky and Shizgal (1980) did the first low-temperature calcul-
ation of the spin-exchange cross sections and phase shifts. KVS (1981)
studied exchange depolarization as a function of magnetic field for a few
initial and final state energies. Morrow and Berlinsky (1983) did an
improved low-temperature calculation, using the best currently available
potential energy curves and also calculated spin-exchange between atoms
in the adsorbed state. Statt (1984) analyzed the magnetic field dependence.
Following the line of Pinard and Laloé (1980), Bouchaud and Lhuillier
(1985) recently reanalyzed spin-exchange in relation to a study of novel
spin-wave modes in H|. To our knowledge, in all, except the KVS
calculation, spin-exchange was treated as an elastic process. In this section
we aim to review the essentials of spin-exchange, including the field
dependence. We shall discuss why the process, while dominant for B =0, is
completely negligible in high fields, unless the gas is brought out of thermal
equilibrium with respect to the population of c- and d-hyperfine levels, for
instance by absorption of microwave radiation.

We also choose to discuss spin-exchange within the golden-rule approach
used throughout this section. This implies explicit incoherent summations
over initial and final states, which is correct as long as the phase of the
wavefunction may be treated as a random property such as-in a system in
thermal equilibrium. Usually (see for instance Balling et al. 1964),
spin-exchange is treated within the density-matrix formalism, which
implicitly keeps track of the occupation of all states. This is of course
extremely convenient for calculational purposes but has the disadvantage
that the contributions of the various spin-exchange channels do not appear
in a transparent manner. Another feature of the density matrix is that it
enables the user to keep track of the phase of the wavefunction. This is
indispensable if one is interested in coherently excited systems such as
spin-exchange in a hydrogen maser but is merely ballast for our present
purpose where we are interested in T,-like relaxation phenomena in a
(quasi-)thermal system.




304 LLF. SILVERA AND J.T.M. WALRAVEN [Ch. 3, §6

We start with the matrix element in the expression for the transition rate
(eq. 6.78). For spin-exchange the two-body T-operator is given by eq.
(6.10a) where H= H, + V and H, = K + H, + H, (analogous to eq. 3.1).
The {|i)} and {|f)} are eigenstates of H,. The interaction V=V, +V__,
enables the transition and describes the interaction between the two
H-atoms. The triplet potential is obtained for V acting on a pair state with
total electronic spin S =1, and the singlet for $=0. Using the G,

operator, we rewrite the transition amplitude,
(f|Tli) = 1}1_1)1}) i, (flVG. i) . (6.86)

The G, operator induces the proper distortion of the initial state due to the
interaction between the atoms. As in section 6.1, we use the sudden
approximation for the spin part of the incoming wavefunction (Wigner spin
rule), neglecting the time dependence of |SM IM,), arising from the
off-diagonal elements of H,; (see table 6.1). References to the limitations
of these approximations which may break down at very low temperatures
are given by Pinard and Laloé (1980).

To evaluate the T-matrix we project the hyperfine states h; and h, onto
the total spin basis {|SMIM,)}

|i> = |h1h2; k> = \/—%[lhlhﬁ k) + |h2h1§ _k)]
=VI 2 [ISMsIM,; k)(SMsIM |h,h,)

SMsIM,;
+|SMIM,; —k){ SM4IM |h,h,)] . (6.87)

A similar expression holds for the final pair state |f). Here, as is commonly
done, we treat the H-atoms as simple composite bosons. The states |k)
represent plane waves. Pinard and Laloé€ also analyzed the internal
structure of the atoms. The spin-projection amplitudes (SM IM,|h,h,)
are summarized in table 6.4a.

Substituting eq. (6.87) into (6.86) and taking advantage of the
diagonality of V within the total spin representation, we find for the
T-matrix

(6T1i) = 2 [(hih;J001M, ) (001M, I, h,) (k' [V'G. )
M, ’
+ (W{hg]00IM, ) (00IM Ihyb, )(k'| VG, |~ K)]
£ 2 (b LMSIM,) (1MSIM, b, hy)(K'1V'G )

+ (hihg| 1M IM ) (IMIM, [hoh YK [V'G L | - k)]
(6.88a)
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With the substitution

> [IMIM,) (1M IM,| =1~ 2, |00IM,){00IM,|
IM;

MsIM;

and using the relation {00IM,|h,h,) = (—1)'(00IM,|h h,), eq. (6.88a) is
drastically simplified

(ilTlt) = 1% (hihs|002M ;) (00IM, |h, b,)[(K' V.G, |k}, — (k'[V,G. |k} ]

+ (k,l‘/sG+Ik)6h1,h{6 hy,hj + (k|V:G+| - k)ahl,h;s hy.h;
(6.88b)

where we have suppressed the explicit use of lim,_,, in and

|k), = k) +(~1)'|-k) . (6.88¢)

Expanding eq. (6.88b) into partial waves, one is left (for h,, h, #hj, h,
which we assume from now on) at most with one term. For / = even this is
the |0000) term; for / = odd this is one of the three [001M,) terms. Since
both the singlet and triplet potential are isotropic, the orbital angular
momentum is conserved during the collision and the angular dependence
may be factored out of the T-matrix. Squaring the T-matrix and integrating
over the angles k and k' expressmns may be derived, using eq. (6.78d), for
cross sections o* and o~ corresponding to even and odd partial waves
respectively:

U:,h;——»hih;’_(k) = 8|(hih£|0000>|2 |<0000|h1h2)|2‘7+(k) >
(6.89a)
O noting (K) = 2 8|(h;hy[001M,){? |(001M,|h,h,) %o~ (k) ,

Mi=-1

where at most one term in the sum contributes, as may be seen from table
6.4a and

2
. B
k)= (—) 6.8%
The {/”} and {I” } represent even and odd integers, respectively. Further,
Tk, k)= [ ar 3GV Ee ) - [ ar oGV,

ji (k) = krjy(kr) (6.89¢)
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where Fi(kr) and F)(kr) are radial wavefunctions distorted by singlet and
triplet potential, respectively (see eq. 6.80) and j,(kr) is a Bessel function.
For thermally activated processes o~ (k) vanishes below the threshold
value. Treating the scattering as elastic (k = k'), the cross sections are
usually given in terms of the triplet and singlet phase shifts

o= (k)= Q2mw/k?) 2 (21 + 1) sin’(n! —n?). ~ (6.89d)

{=)

Equation (6.89a) shows very concisely which spin-exchange transitions are
allowed within the sudden approximation (Wigner spin rule), at the same
time providing the field dependence. For a precise determination of the
cross sections, both the singlet and the triplet phase shift should be known
to high accuracy. In particular, the singlet phase shift is extremely sensitive
for small variations in the potential and likely to be not accurately known.
In fig. 6.8 we show the results of Berlinsky and Shizgal (1980). Note the
important contribution (o) of the H,(14,5) resonance to the o~ cross
section. In view of the recent experimental observation by Dabrowski
(1984) that H,(14,5) is not quasi-bound, this contribution is likely to be
much smaller. In fig. 6.9 we show the thermally averaged spin-exchange
cross sections calculated by Berlinsky and Shizgal (1980). Only the s-wave
contribution is seen to be important for typical experimental conditions,
T <1K. These results were obtained with the (1965) results of Kolos and
Wolniewicz for the singlet and triplet potentials. With better potentials
(Kolos and Wolniewicz 1974, 1975), which are refinements to the 1965
results, the cross sections are reduced by approximately a factor 2 or 3,
witnessing the strong dependence of spin-exchange on the detailed shape

204

4 6 8 10
© e E(meV)

Fig. 6.8. The spin-exchange cross section ¢ * and o~ as a function of the relative energy. Only
the ¢ * does not vanish for E— 0. g, is the contribution of the v = 14, L =5 level to o (after
Berlinsky and Shizgal 1980).
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F &)

TK)

Fig. 6.9. The thermally averaged spin exchange cross sections ¢* and ¢~ as calculated by
Berlinsky and Shizgal (1980). Note that at low temperature s-wave scattering (%) is
dominant.

of the potential (Morrow and Berlinsky 1983, Bouchaud and Lhuillier
1985). From fig. 6.9 one notes that &* is of order 1 A® which is much
smaller than the room temperature value o =23 A? (Allison 1972) and
therefore attractive for those interested in a cryogenic hydrogen maser
(Berlinsky and Hardy 1981). Nevertheless, as a relaxation cross section this
value is extremely large. Comparing eq. (6.89a) with a diffusion cross section
estimated from the diffusion constant of Lhuillier (1983), op, =16 A® at
T = 0.5 K, one finds that one out of 10-20 collisions leads tospin-exchange. In
high field all but the bd = ac spin-exchange cross sections are suppressed by a
factor &2 = [a/(4pg)]’(=10"" for B=10T).

We consider two examples in detail; first the high-field, low-temperature
limit, where only the a- and b-states are populated in thermal equilibrium.
We use eq. (6.89b) and table 6.4a to analyze the field dependence of the
various cross sections for aa, ab and bb collisions and the exchange
depolarization rate as introduced by KVS.

(a) aa-collisions. In aa-collisions only even partial waves contribute as
may be seen from table 6.4, where the total spin states corresponding to
even partial waves ([ + S, even) are labelled with an asterisk. As a
consequence all o~ cross sections vanish identically

* .o(k) = 8](ac|0000) | [(0000|aa)|* " (k)

g aa—ac

=2 (n* - o (k) (k=k,). (6.90a)
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Here k,_ is the momentum threshold value for the a— c transition.
Likewise:

T rmvalk) =26"n°0 " (k) (k=k,), (6.90b)

(k)=8&"'c* (k) (k=2k,.). (6.90c)

(b) ab-collisions.

(k)=0, (6.90d)

ab—»bc

(k) = 8(bcl001 —1)|* [{001 —1|ab)|’s " (k)

ab—)bc
=2¢n'c" (k) (k=k,). - (6.90e)

(c) bb-collisions. Here, the exchange of the electronic spins does not
affect the hyperfine states of the individual atoms which trivially excludes
any spin relaxation.

This example shows that the cross section decreases as 1/B* with
growing magnetic field. In fact the rate decreases even faster. Only atoms
from the high energy tail of the momentum distribution carry with them
enough energy to enable the transition. As this fraction of atoms drops off
exponentially with magnetic field, spin-exchange depolarization is entirely
negligible in the high-field/low-temperature limit. Note further that
spin-exchange does not lead to b— a relaxation in H|}. These features
cause nuclear magnetic b— a relaxation to be dominant over spin-
exchange in high field (see section 6.2.3).

As a second example we treat bd— ac spin-exchange. From table 6.4a
it may be seen that this is the only spin-exchange channel which is not
suppressed in high magnetic fields:

T pasac(k) = 8|(acl0000) | [(0000]bd)’c " (k)

=i’ - &)’

=~1G% (for B>5x107°T), (6.91a)
O perac(k) = 8](ac|0010)|* |(0010|bd) "o~ (k)

- (6.91b)

N—
Qi

A compilation of all spin-exchange cross sections derived using eq. (6.89%a)
is given in table 6.13.
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Table 6.13

Compilation of all spin-exchange cross sections &, . nins- The Ah, columns contain the number
of h,-atoms lost (—) or gained (+) per event. The weight reflects the relative contribution to
the sum over all initial and final states (see eq. 6.78b). Note that all but the ac— bd
spin-exchange contributions vanish as &’ ~ B 7 in high field. Moreover, many of the terms are
strongly suppressed in high field due to the inelastic nature of the process.

h,h,— hih} Aa Ab Ac Ad Weight F pnybing

aa—cc -2 0 +2 0 142 o (aa—>cc)8‘e"'rf1

cc—aa +2 0 -2 0 182 & *(cc—>ac)8s’ n

aa—> ac -1 0 +1 0 1é* . & (aa—>ca)25 n°(n* - £°)°
ac— aa +1 0 -1 0 1aé & (ac—> aa)2¢” i (17 -y
aa—>bd -2 +1 0 +1 142 G*(aa—> bd)2¢” n

bd— aa +2 -1 0 -1 1bd  &*(bd-»aa)2é’ n

ac—bd -1 +1 -1 +1 i¢ - o (ac—>bd)1(n ~s)
bd— ac +1 -1 +1 -1 bd FH(bd—ac)i(n’ - &)’
ac—> bd -1 +1 -1 +1 aé & (ac—>bd)}

bd—ac +1 -1 +1 -1 bd ~ G (bd—ac)}.

ac—cc -1 0 +1 0 faé G (a c—>cc)2£ (n - &’y
cc—> ac +1 0 -1 0 1 ' (cc—ad2e’ m (17 -e’)’
bd— cc 0 -1 +2 -1 1bd " (bd—-)cc)2£ 1)

cc— bd 0 +1 -2 +1 3é? &* (cc—> bd)2¢ n

ab— be -1 0 +1 0 ab & (ab—> bc)2€’ 1;

bc—>ab +1 0 -1 0 bé &~ (bc— ab)2¢” 1,

ad—cd -1 0 +1 0 ad & (ad—> cd)2&’n’

cd—>ad +1 0 -1 0 éd & (cd— ad)2e™n’

6.2.2.1. Relation to the rate equations

With the overall rate of spin-exchange events given by eq. (6.78) and
the cross sections given in table 6.13, it is straightforward to derive the rate
equations for spin-exchange. The result is given somewhat schematically in
table 6.14, for zero field and T > 68 mK. To be specific we consider ae>¢

Table 6.14

Summary of all zero-field contributions to the spin-exchange transition rate for

T > 68 mK where inelastic effects are negligible. The h columns contain the

number of h;-atoms lost (=) or gained (+) per event. Thls number appears as a

prefactor to the rate constant G.(h,h, < hih;) in the rate equations. The weight
reflects the density dependence of the various terms.

h,h, < hlh; d b é d  Gg(hh,ohh))  Weight

aae>cc -2 0 +2 0 toe” (@ - P)
aa<>bd 2 41 0 +1 Yoot (a* - bd)
ac<bd -1 +1 -1 +1 iv6~ (ac — bd)
bd < cc 0 -1 +2 -1 156 (bd - ¢%)
abe>be -1 0 +1 0 oo™ (ab — bc)

adecd -1 0 +1 0 iva” (ad — cd)
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relaxation in detail. For this we sum the 4 and ¢ columns with the
appropriate weights, accounting explicitly for the number of a- and c-state
atoms gained or lost per event. Subtracting the results we find

d Foay ansa A 2——— | ANsa oA
a(a—c)=—nzl70_' (@+éda—-8&)—nve (b+d)d-2)

- _Tl_l (@a-c). (6.92a)

For the special case that 4= b= ¢=d =1, this leads to the well-known

result (see for instance Berlinsky and Shizgal 1980) that

Ti =lon(é* +67). (6.92b)
I

Another interesting example is the high-field limit for T > 68 mK. From
table 6.13, one finds only the ac  bd spin-exchange channel is left. Hence,
guided by eq. (6.78) one finds

a=—10(¢" + & )ac— bd),
b=+ 1v(¢* + & ) ac— bd),

(6.93a)
¢=—10(a" + 7 )(ac — bd),

d=+10(¢" + & )(ac— bd) .

Comparing with the notation of section 5 (eq. 5.15) one finds for the rate
constant for spin-exchange

Ge=1o(c"+a7). (6.93b)
In particular,

d : .
E;(ac—bd)=dc+ac’—bd—ba’
=—1v(¢” + ¢ ) ac — bd). (6.93¢)

Hence, in high field, spin-exchange drives the system to a state in which
(a/b) = (d/c). The relaxation time T, is also as given by eq. (6.92b). This
effect plays an important role in ESR experiments in high field where it
may prevent the experimental modification of the a/b ratio by selectively
pumping the a—d or b—>c ESR transitions.
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6.2.3. Dipolar relaxation

In high magnetic fields only the weak interatomic dipolar forces are
effective in establishing thermal equilibrium between the various hyperfine
levels. We distinguish nuclear-spin relaxation between a and b levels or ¢
and d levels, and electron-spin relaxation, between the lower and upper
pair of hyperfine levels. For convenience these names are used over the full
range of magnetic fields although the simple distinction is only correct in a
strict sense when hyperfine admixtures are absent or negligible. Apart
from these intrinsic processes, dipolar interactions with impurity spins on
the substrate surface may also lead to relaxation.

The nuclear relaxation process was first studied by Statt and Berlinsky
(1980), predicting the double-polarized state (H|1), and also by Siggia and
Ruckenstein (1981) in relation to collective phenomena in the Bose
condensed gas. Factor-of-two inaccuracies were resolved in a careful study
by Ahn et al. (1982, 1983) who also accounted for the inelastic (k # k')
nature of the relaxation process. Lagendijk et al. (1984) showed the
process to be particularly suited to look for exchange effects of complete
hydrogen atoms and used this to demonstrate the Bose nature of the
H-atom.

The surface process was first analyzed by Lagendijk (1982) in a
two-dimensional picture, predicting an anisotropy depending on the
direction of the magnetic field with respect to the surface normal.
Improved calculations were done by Ruckenstein and Siggia (1982), Statt
(1982) and Ahn et al. (1982), all within the 23-dimensional model. The
last authors also discuss a reduction of the anisotropy due to surface
roughness of the helium film substrate. A full three-dimensional calcu-
lation of the surface process was done by van den Eijnde et al. (1983).

The electronic relaxation process was studied by KVS (1981) to estimate
the dipolar depolarization rate in high field. The process was also
considered by Lagendijk et al. (1984).

In the coming sections we shall discuss why the dipolar interaction
although much weaker than the direct and exchange forces, plays an
important role in spin relaxation. First, we present general features of the
dipolar interaction, showing how it may be decomposed into terms
transforming like the spherical harmonics Y7 (7). Subsequently, we study
the transition rate from the double-polarized state H|3. Comparing with
surface Van der Waals recombination, we discuss the result of Statt and
Berlinsky (1980) that at low temperatures the nuclear dipolar relaxation
process is limiting the overall decay of the sample. Then we turn to nuclear
relaxation on a helium surface. The section is concluded with a discussion
of the electronic relaxation process, showing that in high magnetic fields it
dominates over spin-exchange.
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6.2.3.1. Dipolar relaxation—general

In this section we discuss both the nuclear and electronic depolarization of
pure H|{, i.e., a gas of only b-state atoms. To calculate these transition
rates we pick up the treatment of section 6.2.1 at eq. (6.78). The
T-operator is given by eq. (6.10a) where H=H,+V,, and H,= K +
H,+ H, +Vy+ V. (analogous to eq. 3.1). The {|i)} and {|f)} are
eigenstates of H,, which are written as a linear combination of waves
distorted by the singlet and the triplet interactions. Here the collision is
treated within the sudden approximation with regard to the hyperfine
interaction (Wigner spin rule). This approximation was checked against a
close-coupling treatment by Ahn et al. (1983). The dipolar interaction
between the atoms is given by V,,

1\,
Vdd:#() <_) y?

47 \r ¢

X [f(s1,82) = (Yol YU fsy0 B2) + fUEG $2))

()G )] (6.94a)

where the operator expressions f(i,, i,) (eq. 3.9b) are defined in terms of
second-rank tensor operators by

flsix)= 2 TYYT (),

Q= (6m/5)" " s,i, — (s, i_+s_i)],

2

T =%(6m/5) *[s.i, +s,i.], T3 =(6m/5)'"s.i..  (6.94b)
Here the s, and s _ are raising and lowering operators for the spin angular
momentum. s_ is the component of s along the quantization axis. Similar
definitions hold for i,, i_ and i.. The matrix elements of f(s,,s,) and
—{f(s,.i,) + f(i,, s,)} in the total spin representation, {|SM(IM,)}, are
given in tables 6.8 and 6.9, respectively. The matrix elements of f(i,, i,)
are identical to those of f(s,, s,).

The dipolar interaction is very weak in comparison to the direct and
exchange interactions. At the zero-crossing of the triplet potential
(r=3.66 A) the electron—electron contribution represents only 51 mK,
which is more than two orders of magnitude weaker than the triplet
interaction around its minimum. Hence, the motion of the particles is
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negligibly distorted by the dipolar interaction, enabling an accurate
perturbative calculation within the distorted-wave Born approximation
(DWBA). The electron—proton term is even weaker by a factor v,/v, =
658. The proton—proton term is negligible for all practical purposes. The
range of the dipolar interaction is large in comparison to the range of the
triplet potential, so that even a simple plane-wave Born approximation
(PWBA) yields accurate results. This feature makes dipolar relaxation, in
contrast to spin-exchange, into a property which is very insensitive for the
exact shape of the potential and as such ideal for studying particle-
exchange effects in H|{, as shown by Lagendijk et al. (1984).

In H|$ the initial-state pair wavefunction involves a bb-pair and is
distorted purely by the triplet potential. In principle, the final state may
contain both triplet and singlet character. Within the DWBA the transition
amplitude is given by

<f|T|i> = <f|Vdd|i> = %(fl[l + PV, 1+ P]li)

= V2(f|V, i) . (6.95a)

Here we have treated the H atoms as simple composite bosons and used
the invariance of V,, under permutation of total atoms. Note that only one
side of the T-matrix needs to be symmetrized. A complete treatment, also
addressing the internal structure of the atoms, was given by Ahn et al.
(1983).

To evaluate the T-matrix within the sudden approximation, we reex-
press the initial state in the total spin basis {|SM IM,)}:

|i> = |h1h2; k) =\/_% [|h1h2; k) + |h2h1; —k)]

=VI 2 (SMIM,; k) + (=1)°"/|SMIM,; — k)]

SMgsIM,;
X (SMsIM,|h,h,)

=VI X |SMyM,; k). (SMgIM,|hh,) . (6.95b)

SMgIM,
Here we have used the relation { SM IM,|h,h,) = (=1)""*(SMsIM,|h h,)
and the shorthand notation of eq. (6.88c¢) (see table 6.4). States with § =1

(§=0) are implicitly assumed to be distorted by the triplet (singlet)
potential. Analogously, for the final state we have

f)=|hh,s k)= 2 [SMIM,; k){SMIM,|hh,) . (6.95¢)

SMIM,;
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Table 6.15

Summary of the transition matrix elements for electronic and nuclear
relaxation starting from bb, ab and ac initial pair states. Only the
terms contributing to highest order are included. The symbols
¢ (single spin-flip) and d (double spin-flip) are defined in table 6.8.
Scattering is assumed to proceed exclusively via s-waves in the initial
state. All terms have a common factor, (ufi74m) (1/r)’(67/5)' "~

bb ab ac
aa ay, Y[l + ev./v,]
ab ay.Yacll + ev./v.] oy, Y, c*{1+ ev./v.]
ac %acyf
ad acy’:
bb oY, Y, {1 + &%/ v,]
bc acy?
bd — tacy?
cc dy?
cd - idy?
dd dy?

Substituting eqs. (6.95b) and (6.95c) into (6.95a) we find for the T-matrix

@Veliy= X 2 (hihy|S'MoI'M,.)(SMIM,|h,h,)
SMgIM; S'Mg.I'M,.
X(S'Mg.I'M,.; k'|V, | SMIM,; k)., .
(6.95d)

In H|, the only available initial pair states are of the type |bb; k), |ab; k)
and |aa; k). Equation (6.95) and eq. (6.94), in combination with table 6.8
and table 6.9, enable us to calculate the contributions of all final states
allowed by V4. The results are listed in table 6.15.

From table 6.15, one finds that the dominant nuclear relaxation process
is the bb— ab channel. For electronic relaxation, two spin matrix elements
are of the same order. These correspond to bb— bc and bb— cc channels.
The latter may be excluded as it is a double (electron) spin-flip process.
These are negligible in comparison to single spin-flip processes due to the
lack of high momentum states in the translational bath which are required
for energy conservation in the transition.

6.2.3.2. Nuclear spin relaxation in the bulk gas
For the bb— ab relaxation channel, the transition matrix (eq. 6.95d)
reduces to
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(£1V,li) = (ki 4m) 7,7, (3m/10)*(1 + £v./,)
x [(k'|ys*(F) I )l) + (K | y3*(F) Ir'] = B)] (6.96)

The ab—> aa channel leads to identically the same result. The factor
(1+ ey./v,)=(1+16.68/B), with B in Tesla, arises since both the 7,7,
and the > terms of V,, contribute to the rate. The former represents the
process where the nuclear spin is flipped due to the passage of another
atom carrying a Bohr magneton. The latter term corresponds to an
electronic spin-flip, allowed energetically due to the presence of the
spin-up admixture in the a-state, vanishing in high field as 1/B with the
g-admixture of spin-up. For typical magnetic fields used in the experiments
g=1v,/y, and the two processes contribute by approximately the same
amount.

Using eq. (6.78d) to relate the T-matrix to the scattering cross section,
expanding |k) and |k’ ) into partial waves (see eq. 6.80a) and integrating
over all angles k and k’ we find, after a tedious calculation,

T opaan(k) = O 1/(K'K)[1 + (16.68/B)]

x > T, (k, k)|(21+1)(21’+1)[ 2 l']z,

1.l'=even 0 0 O
(6.97a)
where
0., = (247/5)[(pop/47)y, 7, =2.34 x 10" * cm® (6.97b)
T, (k, k') :fdr Fi.(k', N(1/P)Fi(k, 1) (6.97¢)

In the relaxation process, angular momentum is transferred from the spin
system to the orbital system, with the component of the angular momen-
tum along the quantization axis being conserved. At low temperature, the
l,m;=0,0—1,m,=2,*1 transition is dominant. In fig. 6.10 the cross
sections for the bb—ab and ab—bb are compared. The difference
between both cross sections is due to the difference in the overlap integral
(eq. 6.97c). At low relative energies, the elastic-scattering approximation
breaks down. Note the cut-off at E/k=50mK for the ab—bb cross
section. Below this threshold there is not sufficient energy in the trans-
lational motion to flip the nuclear spin. One also observes that the PWBA
yields a very accurate result. From fig. 6.10 one notes that the cross section
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1 L
01 02 03 04 05 06

Fig. 6.10. Spin-relaxation cross sections, o, ,,, and o .. as functions of energy. Also

shown is the elastic scattering approximation (HTL). Each function has been calculated in

DWBA (drawn curves) and in PWBA (dashed curves). The plot is for B =8 T (after van den
Eijnde 1984).

for b— a dipolar relaxation is of order 10™® A? for T > 50 mK. The reason
that this very weak process is the dominant decay mechanism in high
magnetic fields is that bb— ab or ab— aa spin-exchange channels do not
exist (hence absent from table 6.13) and all allowed spin-exchange
channels for ab initial states are strongly suppressed as they scale with 1/B*
and involve transitions to the c- and d-states.

The b— a transition rate I'(b— a) is found using eq. (6.78)

I'(b—a)/V=1b*oa,, ., + Labvc = lbnig,, ., - (6.98a)

ab—aa

Here we have used the result (see eq. 6.96) that o,,_,,, = 0,,,..- Rate
equations of the kind used in section 5 are obtained if we identify

Gob = 100 4stb » Goo = 700 oy, - (6.98b)

where we have used the relation 7, _,,, = 0,,_,,,. Treating the system as
an effective two-level system, considering only relaxation between the a
and b levels and keeping track of the gain or loss of atoms per event, the
rate equations become

b=-Gynb+ Glna=—G,(b>—a’),

i R (6.98c)
d=+Gy,nb— Gl na=+G (b*-a*).
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The approximate expressions hold for temperatures much higher than the
level splitting (T > 50 mK). The relationship between the relaxation rate
constants Gy, and G, and the relaxation time 7' is found by adding 4 and
b in eq. (6.89¢) and comparing with

d 1
b nN=——(b—a). .98d
3 (b—a) T] (b—a) (6.98d)
One finds
1 v v v
T (Gi, + Go)n=2G,n. (6.98¢)
1

An important general relation between Gy, and G, is derived by assuming
the system to be in thermal equilibrium (d = b = 0)

(G',/GL,) = bla=expl— (E, — E,)/kT]. (6.98f)

To first order the b— a relaxation rate will become independent of
temperature for T— 0 K, being dominated by s-wave scattering. Equation
(6.89f) implies that G, vanishes exponentially at low temperature
(T <50 mK).

Both theoretical and experimental values for G, are given in fig. 5.15.
Note the weak temperature dependence of the rate constant. This figure,
taken from Lagendijk et al. (1984), also shows the dramatic importance of
symmetrization. Symmetrizing H atoms as composite fermions, i.e.,
summing over odd [ and !’ in eq. (6.97a), leads to a rate constant which
deviates way beyond experimental error from that with proper Bose
symmetrization. As such, this result provides a clear demonstration of the
Bose character of H{{. i

An accurate expression for Gy, is given by van den Eijnde (1984)

G =(6.329T"% +7.5724,,T""*)(1 + 16.68/B)’ x 10" cm’s™"’
(6.99a)

A, =~ > [1+2y,kB/a] (for B=1T). (6.99b)

N =
Eanl R~

6.2.3.3. Nuclear spin relaxation on the surface

For bb— ab relaxation on the surface, eq. (6.96) remains valid; however,
we must interpret k as a two-dimensional vector in the plane of the surface.
To obtain the cross length, |k) and |k') are expanded in two-dimensional
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partial waves. Before we present an expression for the cross length, we
give some general considerations concerning the two-dimensional relax-
ation process.

One of the most fascinating features of surface dipolar relaxation is the
anisotropy of the rate with respect to the angle between magnetic field B
and surface normal n. It was first pointed out by Lagendijk (1982) that the
surface rate can be made to vanish by orienting B parallel to #. This effect
may be seen from eq. (6.96). If B//7 the direction 7 of the interatomic
vector is perpendicular to #, i.e. in polar coordinates 8 = 3, which is a
condition for which Y}*(#) vanishes.

Another interesting point is that the selection rules are affected by the
presence of the surface. As discussed in section 6.1.2.2, only the compo-
nent of the angular momentum along the surface normal is conserved. This
implies that spin transitions can occur without a change in motional angular
momentum.

Evaluating eq. (6.79d), one finds for the cross length, within the pure
two-dimensional model,

Ay onns = (151327 QL [1/(K'K)][1 + (16.68/ B
x> [sin?20]|T

|2
m.m
m=even

+5sin’0 (1 + cos’ 0)[|T,,,‘,,,+212 + ITm+2,m|2] )
(6.100a)

where 6 is the angle between B and #, and

T = | 40 3,0 (0)1IP)y,0(0) (6.100b)
The relaxation rate may be written as
G,(0)=G,,sin’20 + G, sin’9 (1 + cos® 8),
where in the elastic approximation G, , and G, , are given by
G, (T)=(0.96-0.82T +0.74T*)[1 + (16.68/B)]* x 10" " m*s ™",
G, ,(T)=(0.038 +0.278T)[1 + (16.68/B)]* x 10~ * m*s™".

The expressions are from the paper by Ahn et al. (1982). These authors
also give an angular average accounting for surface roughness:

(G(T)) =(0.69~0.45T + 0.52T*)[1 + (16.68/B)]* x 10~ ®* m*s ™" .
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Here 6, the angle between the field and macroscopic surface normal, is
ZEero.

6.2.3.4. Electronic spin relaxation

As far as the theory is concerned, there is little difference between nuclear
and electronic dipolar relaxation in H{$. The main aspect to point out is
that under typical experimental conditions in a high field we are dealing
with the extreme inelastic limit. For the bb— bc relaxation channel, the
transition matrix, eq. (6.95d) reduces to

(f]V,ali) = (poh™4m)y 23w /10) 2(k | Y3* () 1K) ey - (6.101)

The cross section becomes, analogous to eq. (6.97a),

Topone(k) = O L s T, . (k, K)PQL+ 1)L +1)

ee 3
k’k 1.l’=even

I 2 I'?
“1o o ol (6.102a)

where T, ,.(k, k') is defined as in eq. (6.97) and
0., = (247/5)[(pop/4m)y2 =1.02x 107" cm® . (6.102b)

One may analyze b— c relaxation as a two-level system, analogously to eq.
(6.98), while defining Gy, = 300,y and Gy, = 300y, The strong
inelastic nature, in which only the atoms in the fast tail of the Boltzmann
distribution contribute to the b— c relaxation, gives rise to an exponential
B/T dependence as found both by KVS (1981) and Lagendijk et al. (1984)

G!, = exp[2us B/KT)G}, . (6.103)

Comparing with the theoretical result G!,=9.7x10"" cm’s™' of Lagen-
dijk et al. (1984), for B=7T and T=0.71K, we calculate an effective
cross section for the c— b relaxation of 1.1 X 10~* A’ which is three orders
of magnitude smaller than the zero-field spin-exchange cross sections
(=1 A? see section 6.2.2). This in turn is at least two orders of magnitude
larger than all but the ac— bd spin-exchange cross sections in high field
which are suppressed by at least a factor ¢’ (see table 6.13; e?=10"" for
B =10T). KVS (1981) were the first to compare the exchange and dipolar
relaxation mechanisms between the lower and upper pairs of hyperfine
levels as a function of magnetic field. In fig. 6.11 we have redrawn their
results using the notation G1= G| exp(—2upB/kT)] analogous to eq.
(6.103). We have no qualitative explanation for the origin of the minimum
in the exchange contribution around 10T.
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Fig. 6.11. Theoretical results of Kagan et al. (1981), comparing exchange and dipolar
depolarization mechanisms. See text for further details.

7. Thermodynamic preperties

In the beginning of the 1970s, theoretical evidence of the gaseous nature of
H| at T= 0K became available. In this section we review the theoretical
activities in which the nature of H}, D| and T| was established. This
involves the calculation of a restricted set of thermodynamic properties. To
fully characterize the gas, many thermodynamic properties are of interest.
We mention specific heat, compressibilities, pressure, etc., all as a function
of temperature, in particular near the critical density for BEC. These
properties are conveniently compiled in the recent review by Greytak and
Kleppner (1984) to which the reader is referred.

7.1. QUANTUM THEORY OF CORRESPONDING STATES

An elegant unifying description of the thermodynamic properties of H|,
D| and T| can be given within the framework of the quantum theory of
corresponding states, originally proposed by de Boer (1948) and extended
by Nosanow and co-workers to enable a comparison of the various
quantum fluids (Nosanow et al. 1975, Miller et al. 1975, 1977, Nosanow
1977b). The theory has been reviewed by de Boer and Bird (1954), and
its application to macroscopic quantum systems has been reviewed by
Nosanow (1980).

The first application of the theory to the spin-polarized hydrogens is due
to Hecht (1959), who calculated critical temperatures. He obtained
negative values for both H| and D| implying the absence of a liquid state,
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whereas for T he obtained a value 7,=0.95K. In 1977 Miller and
Nosanow applied the extended version of the corresponding states theory
to the hydrogens, using new values for the potential parameters. Accord-
ing to their analysis, D| could have a liquid state at T = 0K, possibly
under applied pressure. However, H| would remain gaseous at all
temperatures, including T=0K, up to pressures of 54 atm (at T=0K)
“where it would go directly into the solid state. T} would have a liquid
ground state. Recently, more accurate calculations by Panoff et al. (1982),
to be discussed in the next section, provided theoretical evidence for the
existence of a liquid ground state for the deuterium system.

The quantum theory of corresponding states (QTCS) applies to each class
of systems, where the potential energy v may be characterized by two
parameters, one which sets the energy scale (¢) and the other the length
scale (o). Nosanow and co-workers assumed the potential to be pairwise
additive and of Lennard-Jones form, yielding a Hamiltonian given by

_ a 2
H—_ﬁgvi+gjv(rij)7 (7.1)
where
u(ry) = 48[(0’/)‘,-]-)12 - (a/r,.].)(’] =ev*(r,/o) . (7.2)

Here ¢ is the well-depth and o is the hard-core diameter, r, represents the
position of atom i and 7, = |r, = ;. V2 is the Laplacian with respect to r;.
Writing r* =r,/o, eq. (7.1) may be reduced to

H=e[—%nZVf2+2v*(r’fj)]EeH*, (7.3)
i i<j
where V* is the Laplacian with respect to the reduced coordinates r* and
A*)Z ﬁZ
=|—1] = 4
n=(5) = (7.4

is a measure of the relative importance of the kinetic energy term in the
dimensionless Hamiltonian H* and A* is the parameter introduced by de
Boer.

In table 7.1 we reproduce values for m, €, o, 5, A* and other useful
quantities for various systems of interest (Miller and Nosanow 1977). For
the spin-polarized hydrogens they are based on accurate variational
calculations of the 32: potential (Kolos and Wolniewicz 1974; see section
6.1.3).
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Table 7.1

Quantum parameters 7 for various substances. Also given are the masses A*, coupling
constants &, “core diameters” o, /0, and N,o> (from Miller and Nosanow 1977).

m e/k® o ela’ N,o? 7° A*

Substance (amu)® (K) (A) (atm) (cm*/mol)*

H| 1.008 6.46  3.69 17.5 30.2 0.547  4.65
Dl 2.014 6.46  3.69 17.5 30.2 0274  3.29
*He 3.016 1022  2.556 83.39 10.06 0.2409 3.08
T} 3.016 6.46  3.69 17.5 30.2 0.183  2.69
*He 4.003 1022 2.556 83.39 10.06 0.1815 2.68
H, 2.016 37.0 2.92 202.5 15.0 0.0763 1.74
D, 4.028 37.0 2.92 202.5 15.0 0.0382 1.23
Ne 20.18 35.6 2.74 235.8 12.4 0.0085 0.58
Ar 39.95 120.0 3.41 412.3 23.9 0.00088 0.19
*1 amu = 1.66024 X 10~ kg. ‘N, = 6.02252 x 10™ particles/mol.

®k =1.38054x 1072 J K", ‘% =1.05430 X 107> J 5.

According to the QTCS, the free energy F of a one-component system
may be reduced to a form (F* = F/Ne; N is the total number of particles in
the system) which only depends on the reduced variables for the tempera-
ture, T* = kT/e, n* = 0°N/V=1/V* as well as on 1 and the statistics that
apply to the system:

F*=F*(T*,V*,1). (7.5)

It is also useful to define the reduced pressure p* = po’/e.

Nosanow and co-workers extended the de Boer theory by interpreting 7
as an additional thermodynamic variable (besides p* and T*). This
enabled them to construct phase diagrams in a space spanned by p*, T*
and 7 (Nosanow 1977b). To express a change in the free energy F*, we
need to introduce a variable (¢ *) which is the thermodynamic conjugate of
1 (Nosanow et al. 1975)

dF*=—=8*dT*—p*dV* + ¢* dn, (7.6)
where
¢*=(3F*19n) 7y, (7.7)

and the reduced entropy is $* = S/Nk.

Using the powerful framework of statistical mechanics and ther-
modynamics, the phase diagram in p*—T*—x-space can be mapped out.
Clearly, n only has physical significance for certain discrete values
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(corresponding to real physical systems), but the concept of using n as a
continuous thermodynamic variable is useful in obtaining insight into the
various phases which are accessible to macroscopic quantum systems.
Using Lennard-Jones potentials, the ground-state properties of many-
body Bose and Fermi systems as a function of 7 have been calculated by
Nosanow and co-workers and published in a series of papers dealing with
the liquid—solid phase transition (Nosanow et al. 1975), liquid—-gas phase
transition (Miller et al. 1975, 1977) and generalized phase diagrams and
critical behavior (Nosanow 1977a,b). Two-dimensional systems were
studied by Miller and Nosanow (1978).

Some features of the ground state are immediately clear from eq. (7.3).
For small 7 the system behaves “classically”, i.e., the potential energy is
dominant and the atoms are located at the equilibrium sites of a crystal
lattice. With growing 7 the kinetic energy becomes increasingly important
and beyond a critical value the system melts. If we continue to increase 1
we reach the point where the system no longer can sustain a many-body
bound state and it becomes a quantum gas. However, other features such
as the dependence of the results on the statistics of the system are more
subtle. For the Fermi-case, due to the Pauli principle the ground-state
energy depends markedly on the nuclear spin degeneracy. For D] this
implies a dependence on the occupancy of the various hyperfine states. To
distinguish the various cases Miller and Nosanow (1977) introduced the
notation D} ,, where the index v refers to the ground-state degeneracy or
number of allowed nuclear spin states. In the limit v— o, keeping n
constant, the difference between Fermi and Bose behavior vanishes (Bose
limit). '

Miller et al. (1975, 1977) calculated the location of the critical point as a
function of m, using a variational method to determine the ground-state
energy (for more detail on the method see the next section) and found that
beyond n, = 0.33 (for » = 2 fermions) and 7, = 0.46 (for bosons) (see fig.
7.1) the systems are gases at T*=0. The » =1 fermion case was studied
by Miller and Nosanow (1977) who found 7, = 0.35. Comparing the values
of n for H}, D} and T| (table 7.1) with the relevant values for 7., we note
that at all temperatures H} should behave as a fluid above its critical point,
i.e., it remains a gas down to T = 0 K and up to the solidification pressure.
T\ is expected to have a liquid ground state. The results for D| are not
unambiguous. D] could be a liquid or exhibit two coexisting fluid phases.
The uncertainty is due to the approXimate nature of the theory. Recent
Monte Carlo calculations predict D| ; to be a liquid at T =0 K (Panoff et
al. 1982). Such calculations are not available at present for D|,and D{,.

The remarkable phenomenon of two coexisting fluid phases in a
one-component system at T = 0 K is illustrated in fig. 7.2, reproduced from
Miller et al. (1977). Focusing on the curve for  =0.31, one notes that at
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low densities the energy of the system is just proportional to the Fermi energy

Ef= Zn(67°n* Iv)*"?, (7.8)

where v is the spin degeneracy. At higher densities the curve starts to bend
over as interactions become important and shows a minimum at n* = (.15.
Beyond a critical density it becomes energetically favorable for the system
to phase separate into a low- and a high-density fluid phase. In both phases
the pressure and chemical potential are required to be equal. Clearly the
phenomenon of coexisting fluid phases does not exist in a Bose system,
where both statistics and interactions tend to bring the particles closer
together (see fig. 7.1).

Although the QTCS is not decisive as far as the nature of the D| ground
state is concerned, it leaves little doubt that D| may be pressurized into a
liquid state. With the aid of fig. 7.3, one finds for the critical point
T.=1.29K for D|,, T.,=1.68K for D}, and T,=2.5K for T|}. In a
recent paper, Hecht (1981) has redone his original calculation (Hecht
1959) of the critical points, based on more recent values for the Lennard-
Jones potential parameters and an extrapolation scheme that conserves the
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Fig. 7.3. Reduced temperature T* versus quantum parameter 7 based on a Lennard-Jones

potential. The experimentally available points are indicated by the open circles. The dark

circles represent the T=0X theoretical estimate of 7, for the gas—liquid phase transition.

The estimated values for D ,, D{, and T| as obtained by interpolation between experimen-
tal and theoretical points are indicated by the arrows.
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critical ratio p*V*/T* = 0.3 as suggested by theory (Nilsen and Hemmer
1969). The results are 7,=1.56K for DJ, and T.=3.28K for T|.
Statistical corrections were neglected, with reference to a paper by Lieb
(1967).

To conclude this section on the corresponding-states theory we present
estimates of the solidification pressures ( p,). These were obtained using
the procedure of Nosanow (1980), based on results of Nosanow et al.
(1975) and Nosanow (1977) for the liquid—solid phase transition. In view
of the rather speculative nature of these figures we only give the results:

p,=54atm for H|, p, =12 atm for D|, and p, =5 atm for T|.
7.2. GROUND-STATE CALCULATIONS

After the more general discussion of the spin-polarized hydrogens within

the framework of the QTCS, in this section we discuss a number of

calculations of the ground-state energy for H| and its isotopes. These -
calculations were intended to yield the “best available™ estimate for the

nature of the ground state.

The first calculations to provide convincing evidence of the gaseous
nature of H| down to T = 0 K were by Etters and co-workers (Etters 1973,
Dugan and Etters 1973, Etters et al. 1975, Danilowicz et al. 1976), who
applied the Monte Carlo technique to obtain the energy, pressure and
compressibility of the ground state of H{, D|, and T} for a variety of
densities, ranging between 40 and 200 cm®/mol. In 1978, this work was
extended to lower densities of order 2 x 10* cm®/mol (Etters et al. 1978).
Also the solid, and solid-fluid phase transition were studied by these
authors (Danilowicz et al. 1976), but will not be discussed in this review.

Accurate approximate results for the ground-state properties were also
obtained by Miller and Nosanow (1977), who applied two different
cluster-expansion methods. Apart from improving upon the accuracy of
existing theory, this work showed that for D/ the calculations were not
sufficiently accurate to decide upon the nature of the ground state at
T =0 K. Relatively clear-cut results were obtained for H| (gaseous) and
T} (liquid).

The required high accuracies for D{ challenged a number of theorists to
apply the most advanced methods of Fermi-fluid theory to decide upon the
nature of the D} , ground state. Clark et al. (1980) and Krotscheck et al.
(1981) used the method of correlated basis functions and a Fermi-HNC
approximation to calculate the ground-state energy, but this work also
lacked the required accuracy. The first results that point convincingly
towards the existence of a liquid ground state at zero pressure came from a
variational Fermi—Monte Carlo calculation for DJ,. Within statistical
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error a negative upper bound was obtained for the energy for a range of
densities (Panoff et al. 1982). It is not our aim to give a detailed account of
the various calculational techniques employed. For this purpose the reader
is referred to reviews by Feenberg (1969), Zabolitzky (1977), Clark (1979)
and Clark et al. (1980). In discussing the various results we shall reference
the original literature where useful.

The Hamiltonian of a N-body system of atoms interacting pairwise via
the triplet potential V, is given by

ﬁz
H=— 5o 2V + E Vi(r,) (7.9)

where r, represents the position of atom i and r; = |r, — "/I' To obtain the
ground-state energy per particle one has to calculate the expectation value
of the Hamiltonian with respect to the ground state |¢)

1
(E) = (WIHI0) 1 {glw) . (7.10)
7.2.1. The boson case

Both Etters et al. (1975) and Miller and Nosanow (1977) chose ‘a
variational wave function of the Jastrow type to approximate the ground
state iz of the Bose systems H| and T|

Yo =F(ri,...,r) =11 fr;) . (7.11)

i<y

This ground state is built up as a product of ; N(N —1) functions f(r;)
describing the correlations of the pair (i, j). Then the ground-state energy
per particle for the boson case, ( E), follows from repetitive use of eq.
(7.11), the relation

VE=FXV.Inf(r,), (7.12)

J*i

and integration by parts (see McMillan 1965)

<‘I’B|H|¢B> = g f Fz[— zﬁ_m V? In f(rij) + v:(rij)] dr, (7.13)

where dris used to indicate integration over the spatial coordinates of all N
particles. Introducing the (Bose) pair-correlation function

gs(r) = wfwgdr,--dm/f W3 dr (7.14)
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one obtains
(E)g = %nJ- gB(r)[— % VZIn f(r) + K(r)] dr. (7.15)

We first discuss the approach of Etters et al. (1975), who used a Monte
Carlo method on a collection of 32 particles that had proven to be very
successful in calculating the properties of the Bose fluid ‘“He (McMillan
1965). The density of this model system was varied by changing the volume
of a cubic box; periodic boundary conditions were used to simulate an
infinite system. Originally (Dugan and Etters 1973, Etters et al. 1975), a
Morse potential fitted to the °3. potential energy curve of Kolos and
Wolniewicz (1965) (see section 3) was used

Vu(r)=elexp2c(1 —rir,)—2expc(l—r/r,)], (7.16)

where r=r;, e/k =6.19K, r,, = 4.1527 A is the position of the potential
minimum, and ¢ =6.0458 is a dimensionless constant. Equation (7.16)
provides a good fit for both the well-region and the short-range part.
However, it was pointed out by Stwalley and Nosanow (1976) that for
long-range, the Morse potential is incorrect and therefore is not suited for
an analysis of the low-density properties. In a later paper, Etters et al.
(1978) used the analytic form (3.6), which represents a much better fit to
the >3 " potential of Kolos and Wolniewicz (1974).

Etters et al. (1975, 1978) used a biased random walk procedure to
calculate the ground-state energy. This involved the numerical evaluation
and averaging of eq. (7.13) for 10° configurations. The form of the Jastrow
function chosen was

f(r) = exp[—b, exp(=b,n)], (7.17)

which represents a WKB solution to the Morse potential, eq. (7.16), at
short-range. The Monte Carlo procedure implies random generation of the
configurations, which are accepted or rejected by a biasing procedure that
conserves the probability distribution |F(r,, . . ., r )| To exploit the varia-
tional nature of eq. (7.17) Etters et al. (1975, 1978) minimized the energy
for each density. The pressure and compressibility were obtained by taking
the appropriate derivatives of the energy with respect to volume.

The results of Etters et al. (1978) for H| are reproduced in table 7.2
and shown in fig. 7.4 along with the results of Miller and Nosanow (1977)
and the results of the hard-sphere model (Friend and Etters 1980). The
monotonic increase of the energy with density points convincingly to the
gaseous nature of HJ.
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Table 7.2

The Monte Carlo results for the energy E and pressure P versus density.
a’lv is the hard-sphere model expansion parameter, where a = 6.5 au and
v is the volume per atom. N,/N is the fractional number of atoms in the

condensate.
10’2 (A7) E (K) 10°P (kg/cm?®)  10%a%/v N,/N
3.010 1.902 +0.081 1080.0 - -
2.007 1.105 +0.044 431.0 - -
1.505 0.681 =0.027 217.0 - -
1.204 0.543 =0.031 129.0 - -
0.803 0.326 +0.024 46.0 - -
0.602 0.192 =0.014 22.0 2.46 0.764
0.301 0.101 +0.012 45 1.23 0.833
0.120 0.047 +0.007 0.72 0.49 0.895
0.060 0.0165 = 0.004 0.28 0.25 0.926
0.045 0.0125 + 0.003 ~ 0.065 0.16 0.939
0.030 0.0064 = 0.002 0.018 0.12 0.047
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Fig. 7.4. The ground-state energy per H-atom versus density. The dots represent the
Monte Carlo results of Etters et al. (1978). The squares are the results of Miller and Nosanow
(1977). The dashed line corresponds to the hard-sphere results of Friend and Etters (1980).
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In their calculation Miller and Nosanow (1977) tried two potentials, the
“exact” °3 T potential (Kolos and Wolniewicz 1974) and the Lennard-
Jones fit to this potential given in table 7.1. The “exact” potential was
supplemented for the long-range regime using a polarization expansion
determined by Bell (1966)

V(r)~ -—cer‘6 — cBr"8 — cwr_10 , (7.18)

where ¢, =4.506 x 10° K A%, ¢;=2.415x10°KA® and ¢, =1.786x
10°K A"

The treatment of Miller and Nosanow (1977) was also variational in
nature, using a trial wave function of the type eq. (7.11), however, the
McMillan form was chosen for f(r):

f(r)= exp[ - %(brm/r)s] , (7.19)

where b is a variational constant. Etters et al. (1975) also attempted this
form for f(r) in conjunction with a Lennard-Jones potential, but obtained
lower energies with eq. (7.17) and the Morse potential.

To calculate the ground-state energy Miller and Nosanow (1977) used
two different cluster-expansion methods, which appear to provide a good
approximation, in particular in the low-density regime. The methods used
are the “BBGKY-KSA” due to Born, Bogoliubov, Green, Kirkwood and
Yvon, which includes the Kirkwood superposition approximation (KSA),
and the hypernetted chain (HNC) approximation. In fig. 7.4 we only show
the BBGKY results, which were found to be slightly lower than the results
obtained with the HNC method. The results obtained with the Lennard-
Jones potential are also included to provide some perspective of the
accuracy of the predictions based on the quantum theory of corresponding
states.

7.2.2. The fermion case

For the fermion case the wavefunction has to be antisymmetrical, suggest-
ing a Slater—Jastrow-type trial wavefunction for the ground state

Ye=F(r ..., ry)é(rioy, ..., ryoy). (7.20)

Here Fis defined by eq. (7.11), ¢ is a Slater determinant of free fermions
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with spin o;, and

¢ = det{exp(ik; - ;) x,(0;)} , (7.21)

where y,(g;) is the spin state of the jth particle.

Based on eq. (7.20) various equivalent expressions may be derived for
(E)g, the ground-state energy per particle for the fermion case. These
result from different partial integration schemes for eq. (7.10) (Zabolitzky
1977). We give an expression obtained by use of the Jackson—Feenberg
(1961) identity

[ wrviar =3 [ Qv - @+ ey ar. (1.22)

Substituting eq. (7.20) and using eq. (7.12) one finds

f eV dr = 5 fF |¢°V: In f(r;;) dr
/#1

+ f F[¢*V ¢ —V;|¢[’)d7. (7.23)

Introducing the Fermi pair-correlation function,

ee)= "D [ plg ar, - ary/ [l ar, (1.29)

one arrives at
(E)e= {HV2m)2 + 2 n | ge-(2mV* n ) + V() dr

1
+ Nfﬂ}ij (ﬁz/zm)vf|¢|2dr/f|¢F|2d7. (7.25)

The first term is the free-fermion kinetic energy, dominant for n->0, with
k. the Fermi momentum. The second term is closely analogous to eq.
(7 15) but contains, in addition to the dynamical correlations accounted for
by gs(r), also the statistical correlations implicit in |¢|>. The last term of
eq. (7.25) requires evaluation of V2|¢|* and represents a kinetic energy
correction.

There are various methods to evaluate ( E) .. A well-known procedure,
due to Wu and Feenberg (1962) is to treat the fermions as bosons and to
account for the statistical correlations in an approximate way by means of a
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cluster expansion. Various methods to generate such a statistical cluster
expansion are discussed in the book by Feenberg (1969). This method is
expected to work particularly well if the dynamical correlations keep the
atoms sufficiently far apart for the statistical repulsion to be small.

The Wu-Feenberg approach was taken by Etters et al. (1975) to study
D|, in analogy to Schiff and Verlet’s (1967) application of the method to
liquid *He. The associated D|-Bose problem was solved using the same
Monte Carlo program that served for the H} and T| calculations (see
foregoing section). Miller and Nosanow (1977) and Miller et al. (1975,
1977) also used a statistical cluster expansion to correct for the statistics,
but chose for the BBGKY-KSA and HNC integral equation to approxi-
mate g (r). In addition to D ,, Miller and Nosanow (1977) also studied
Dl ,.

More advanced approximate solutions for eq. (7.25) may be obtained by
using the Fermi-hypernetted-chain (FHNC) method in which both
dynamical and statistical correlations are treated on equal footing. For a
detailed discussion of the method in terms of cluster diagrams the reader is
referred to the reviews by Zabolitsky (1977) and Clark (1979). Krotscheck
et al. (1981) applied the FHNC-method to D{,, D{, and D{ ;, using an
“optimized” Jastrow function, obtained by minimizing the energy func-
tional with respect to In f. The results are shown in fig. 7.5 along with
the D , results of Miller and Nosanow (1977) obtained with the McMillan-
type Jastrow function given in eq. (7.19) with chosen b(#n) to minimize the

;
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Fig. 7.5. Energy per particle for D} ,, D}, and D}, as obtained by Krotscheck et al. (1981)

using correlated basis functions for D{ , and D| ,. The result of Miller and Nosanow (1977) is

given as a full line; the results of the variational Monte Carlo calculation of Panoff et al.
(1982) for D}, are indicated by the dots.
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energy for each density studied. The results of Etters et al. (1975) were the
first available for D| and stimulated theoretical and experimental work,
but are not included in fig. 7.5 since they are no longer considered
up-to-date.

Focusing on the FHNC results, one notes that the minimum in the D ,
energy versus density curve lies below the minima for the DJ, and
the D| | results, as one expects intuitively. For detailed considerations and
error estimates of the FHNC-method the reader is referred to the original
literature (Krotscheck et al. 1981).

The FHNC results substantiated the conclusion, already drawn by
Miller and Nosanow (1977), that for D| the kinetic and potential energies
almost cancel each other. Therefore, very accurate calculations are
required to decide upon the nature of the ground state. Although the
theory presented was not sufficiently accurate to be decisive in this respect,
in particular D| , is likely to have a liquid ground state. If not, only a very
slight applied pressure should suffice to, liquify any of the D| , modific-
ations.

The first convincing result that a liquid ground state of D| ; exists was
obtained by Panoff et al. (1982), using a full Fermi-Monte Carlo
evaluation of ( E ) for up to 99 particles. The application of this method
was made possible by recent advances in high-speed computing facilities.
The calculation used the complete antisymmetrized wavefunction (7.21)
with an “optimal” choice of f(7) taken from the paper by Krotscheck et al.
(1981). The same f(r) was used for all densities. The results are also
included in fig. 7.5 and show, within statistical error, a negative
minimum, required for a liquid ground state. In view of the “exact” nature
of the Monte Carlo evaluation of ( E ) these results represent a rigorous
upper bound for the energy. Moreover, the interaction potential is also
known to high accuracy giving confidence that D| , liquifies at sufficiently
low temperatures.

8. Many-body static and dynamic magnetic properties

Many of the very new aspects of H, D, and T are due to the magnetic
moments associated with the electronic and nuclear spins. The magnetiz-
ation of the gas has already been generally discussed in section 2.3 and the
inhomogeneous density or magnetization due to a magnetic field gradient
has been briefly handled in section 5.1.4.1. In this section we consider in
greater detail the interaction with a magnetic field, in particular under
conditions in which quantum degeneracy is important. We first discuss
static properties which display unusual behavior due to the statistics, then
dynamical properties or magnetic excitations.
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8.1. STATIC MAGNETIC PROPERTIES
8.1.1. Noninteracting gases

An intriguing question concerning H| is “what happens to the density
distribution if the gas Bose condenses?”. Since the condensate represents a
macroscopic population of the lowest energy state of the gas, one might
expect the condensate to accumulate in the highest field regions of an
inhomogeneous magnetic field. In order to get some insight into this
behavior, Walraven and Silvera (1980) analyzed the problem for a field
which varied quadratically with displacement from the field center, such as
for a simple solenoid. They made a further (nonphysical) approximation
that the field gradient only existed in the z direction so that egs. (5.1)
become

B,(r)=B,(1-2%z;), B,=B,=0, (8.1)

with z, =51 mm, which represents an actual experimental solenoid.
In this case the Schrodinger equation for noninteracting atoms in the

m_ = —1 state becomes

5

ﬁz
2 [" —_— V? + ,J,BBO(z,./zO)Z]l,[f(rl, TyyovosTy)

F 2m
=ed(r,rys---,IN) (8.2)

where the energy is measured with respect to the static energy (—ugB) in
the field center. This Hamiltonian corresponds to harmonic oscillator
motion in the z direction and plane wave motion in the x—y plane. The
wavefunction can be factored: ¥(ry, ry, ..., ry) = Y )P(ry) - ¥(ry).
The single-particle wavefunctions are of the form '

Yo, (r) = &, (2) exp(ik, 7)), (8.3a)

where ¢, is a harmonic oscillator (HO) wavefunction with oscillator
energy splitting

fiw, = R(2ugBy/mz3)'' . (8.3b)

Here, w, = 6.8 X 10° rad/s for a field of 10 T with z, = 51 mm. Thus in this
field the HO states are very closely spaced and of order 10° states are
populated for T=0.1K.

Populations are governed by the Bose distribution function, eq. (1.8),
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N, = {exp[(s, — w)/kT] — 1} " and the density distribution is calculated,
using :

n(r) =2 N|w0I*. (8.4)

Here ¢,(r) denotes a single-particle eigenstate of eq. (8.2). The density
distribution for T > T_ shown in fig. 8.1a is Boltzmann-like; a classical
approximation is used for ||’ Below the critical temperature for BEC
the k, = 0, ground oscillator state is macroscopically occupied. The width
of the HO ground state is approximately 7 wm (fig. 8.1a). The axial
density profile for this noninteracting case below T, is a broad (non-
Boltzmann) normal component with a spatially localized, sharp, distinc-
tive peak at the field maximum, representing the condensate fraction.

It is interesting to contrast the Bose and Fermi gases (Silvera and
Walraven 1981a), the latter represented by D|. At T = 0 K only the ground
oscillator state of the Bose gas is occupied, yielding a sharp density peak
around z = 0; however, the Fermi gas has a very broad density distribution
shown in fig. 8.1b. This is also calculated using eq. (8.4), but with the

®
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Fermions
T=0

Distance from center ——s=

Fig. 8.1. (a) The axial density distribution for noninteracting bosons in an inhomogeneous

solenoidal magnetic field above and below T, demonstrating the spatial localization of the

condensate fraction at the field center. For T > T, the normal fraction can be described by

Boltzmann statistics, whereas for 7 < T, it has a characteristic Bose dependence. (b) The

T=0K density distribution for a Fermi gas. At T=0K the Bose gas density would be

represented only by the peak at the center, demonstrating the fundamental differences of the
Bose and Fermi gases (after Silvera and Walraven 1981a).
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Fermi distribution function N, = {exp[(s, — u#)/kT]+ 1} " In this case,
each oscillator state is filled up to the Fermi level. The density distribution
can be represented by

n(z) = n(Bo)[1 = (2/2z¢)’1"”, (8.5)

where z; defines the boundary of the Fermi surface, Ep = Imwlzi. The
distribution for the degenerate Fermi gas does not differ distinctly from a
classical distribution, in contrast with the Bose gas.

8.1.2. The weakly interacting Bose gas

The picture just presented for the ideal Bose gas is quite unrealistic
because interactions between particles will prevent the density from
building up into a narrow peak. Walraven and Silvera (1980) treated this in
the T = 0K case, and showed that the density peak of 7 um width spread
out to several millimeters. This analysis was extended to finite tempera-
tures by Goldman et al. (1981) and Huse and Siggia (1982) using a
Hartree—Fock approximation, and Condat and Guyer (1981) who used a
Ginzburg-Landau energy functional approach which seems to have some
errors, but yields the same general result.
The interaction Hamiltonian is

H= 2 { T H_ V2 + Uext(r )} E V(rif) ’ (86)
i#j
where U,,, represents the interaction with the external magnetic field.

V(r;) is taken as the triplet Kolos—Wolniewicz potential. For low energies,
V(r,) can be replaced by an effective range potential v,8(r;;), for ease of
calculatlons One approach to the interaction problem is to use scattering
theory and a phase-shift analysis. Bosons interact only with even pair
angular-momentum states and at low energies (or temperatures) in the
k— 0 limit, only s-wave scattering is important. Friend and Etters (1980)
have calculated the s-wave scattering length, a, =0.72 A, based on the
Kolos—Wolniewicz potential. The relation to v, is

Amh?

Vo= 4 (8.7)

The effective range potential can be used in the Hartree—Fock approx-
imation to yield two equations:

22
[ T om v+ 2vgn, +2v0n, + Uexl(r)]¢k(r) =g,d(r), k+#0, (8.8a)
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7 |
[ = 20 4 20, + vy + Vo) |00 = 00 (8.80)

Here n is the total bulk demsity and n, and n, are the normal and
condensate densities; &, and g, are the corresponding single-particle
energies. ¢, and ¢, are the condensate and normal wavefunctions. The
single-particle energies, to first order, are

g, =Rk 12m + (n, + )k, + 2vn, + 2000,
and
g, = 3hawy +2v4n, + vgn, .

Due to identical-particle exchange effects there is an important factor of 2
difference in the interaction energy, which depends on the particle states.
If two interacting particles are in the same state then the interaction is vyn,
whereas if they are in different states the term is 2vyn. Thus, interactions
between condensate particles are smaller by a factor of two. These
equations represent an extension of the Gross—Ginzburg—Pitaevskii theory
to finite temperatures with a spatially varying external potential. Note in
eq. (8.8b) that the (positive) term v n, = v,|d,|* makes it energetically
unfavorable to have a large, spatially localized, density as in the v, =0
noninteracting case.

Gross (1963) and Wu (1961) defined a “healing length” £ = (87a.n)~ 12
which is the characteristic length for the condensate to spatially adjust to a
rapldly varying potential. In the present problem it takes the form
£=27> ol Zine = =230 A x (10**/n)""?, with n in cm >, where the zero-point
width is z,, = (fi/2mawy)'"? and 2yt = (2nv0/mw0)”2. Since for the low
densities of interest (n<10"/cm’) A, <z, o < Zi,, the WKB approxi-
mation is applicable, so that the effective smgle particle potentials can be
usedineq. (8.8). Carrying out the usual continuum approximation for N;, the
solutions for the normal and condensate densities are approximately

n.(2) = Ay 8312 exp{l i — 2n,(2)vg — 2ng(2)v, — Uy (DT}
(8.9a)

nO(z) = [.“'/vo - 2n’n(z) - Uext(z)/vo] 0[[.L - 2n’n(z)v0 - Uexl(z)] ’
(8.9b)

where 0] z] is the Heaviside unit-step function. Expression (8.9b) expresses
the fact that the condensate density adjusts itself so that the interaction
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energy balances the energy of the external field. The chemical potential u
is determined in the usual way, by requiring the spatial integral over the
condensate and normal densities to be equal to N, the total number of
particles. An example of the resulting density profiles for 10'° H{{ atoms
in a tube of cross sectional area 0.01 cm® is shown in fig. 8.2 for several
temperatures in the neighborhood of T.. We see that the density does not
“diverge” as in the noninteracting case, and is substantially broadened.
Nevertheless, the condensate fraction is spatially localized in a distinct-
ive fashion. Since the density profile can in principle be measured by
magnetic-resonance techniques, this presents an interesting possible ap-
proach to observing BEC.

35
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Te =2934mK
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Fig. 8.2. The axial density profile for a gas of interacting Hl{ in a solenoidal magnetic field in

the vicinity of T,. This demonstrates the broadening of the condensate distribution due to

interactions, as compared to fig. 8.1a. The inset shows the behavior of the chemical potential

and the ground-state energy &, in the neighborhood of T,. Below T, ¢, = u (after Goldman
et al. 1981).




340 I.F. SILVERA AND J.T.M. WALRAVEN [Ch. 3, §8
8.2. DYNAMICAL PROPERTIES: SPIN-WAVES
8.2.1. General

The possible magnetic excitations cover a very broad frequency range,
from 10°-10'* Hz. We shall concentrate our attention on hydrogen. Most
of the results are applicable to H and D, although D has a richer spectrum
since I = 1. The excitation spectrum of a degenerate gas of D| will not be
treated.

In a parabolic magnetic field the lowest frequency modes are the axial
harmonic-oscillator modes just discussed; these have not been observed. A
brief discussion was given by Silvera and Walraven (1981a).

Berlinsky (1977) has considered nuclear and electronic spin-wave
excitations in the Bose condensed (T = 0 K) state, which range in frequen-
cy from 10°-10'> Hz. He found four dispersion relations for excitations
from the ground state (a-state) corresponding to the usual spin-indepen-
dent phonon-like density fluctuation mode for a superfluid and three spin
fluctuation modes. These correspond to a coherent nuclear spin-wave
(spin-flip) mode, an electron spin-flip mode and an electron-nuclear
spin-flip mode. These modes have energy gaps depending on the field, the
hyperfine interaction and the exchange.

Berlinsky et al. (1977) investigated the dynamical instability of spin-
polarized hydrogen to a spontaneous spin reversal which would lead to
recombination. They examined the energy balance between the electronic
Zeeman interaction with the external magnetic field and the interaction of
a spin with its environment, which favors an antiparallel alignment. Above
a critical density, the spin spontaneously reverses, and the system can then
decay by recombination. It turned out that the second and third-order
recombination processes are so strong that these critical densities can
never, in practice, be reached. Kagan and Shlyapnikov (1981) reanalyzed
this problem as well as the spin-waves, pointing out that both the singlet
and triplet s-wave scattering cross sections must be considered, yielding an
even higher critical density for the spontaneous spin-reversal process.

Siggia and Ruckenstein (1980, 1981) considered the hydrodynamics of a
two component (|a) and |b)) Bose condensate. They showed that the two
condensates are coupled and give rise to a spontaneous coherent magnetiz-
ation perpendicular to the main field.

Recently, nuclear “spin-waves” in H| have been observed at low
densities in the nondegenerate regime. These modes are due to identical-
particle effects and involve both diffusion and spin rotation. They are of
quite a different nature than the modes first treated by Berlinsky. We shall
concentrate on these modes in the remainder of this chapter.
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8.2.2. Nuclear spin-waves in H|{

Spin oscillations or spin-waves have been discussed for dense degenerate
liquids such as *He for some time (see, for example, Leggett and Rice
1968, Leggett 1970). However, Lhuillier and Laloé (1982a, b), Lhuillier
(1983) and Bashkin (1981) made the remarkable observation that such
effects can also occur in a low-density gas of indistinguishable particles if
A,, is somewhat larger than the size of the atom (d). These oscillations find
their origin in the “identical-spin rotation effect”, a mutual rotation of the
spins of two indistinguishable particles about their vector sum due to
interference effects when their wave packets of dimension A, overlap,
even for a spin-independent Hamiltonian. The sign of the interference is
opp051te for bosons and fermions.

He has nuclear spin } and these atoms clearly behave as fermions. The
hydrogen atom has both electronic and nuclear spin 3, the spins being
weakly coupled by the hyperfine interaction. As long as A, = d (Pan et al.
1985), the atoms behave as composite bosons and the wavefunction for a
pair of H atoms must be symmetric with respect to atomic interchange.
Thus, even though the spins are 3, and we focus our attention on the
dynamical aspects of the nuclear or electronic spins, separately, the
wavefunctions must still be symmetric under interchange of the atoms.
Thus the nuclear spin 3 hydrogen atoms are treated as bosons.

Consider two identical spin 5 atoms with spins i; and i, in spatially
separated states: «,|4) + B,|[¥) and a,|4) + B,|¥). The orientations of
the spins in space are determined by the coefficients a and B. If there were
no spin interactions or identical-particle exchange effects the particles
would scatter off from each other without modification of the spin
orientation, i.e., coefficients @ and 8 would be unaffected. However,
because of indistinguishability in the overlap region, it is necessary to use
properly symmetrized wavefunctions. The proper symmetrization of the
orbital wavefunction depends on the spin state of the atoms, hence in
general a collision will cause the phase of the ¢, and B, coefficients to shift
by different amounts. Since o’ + Bi=1 and the total spin I=1i, + i,
should be conserved, a rotatlon of i, and i, around I is implied. If, say,
B, = ,32 =0 so that the spins are parallel, there can be no rotation and if
B, = @, =0 so that the spins are antiparallel, the effect vanishes. Since for
H|, /\m 17.4 T™""* A and d =3.5-4 A, these effects are significant at low
temperatures.

For a many-body gas a coherent spin oscillation due to the two-body
identical-spin rotation effect can exist if the spins are polarized. Lhuillier
and Laloé used a density matrix formalism to find an equation for the ith
spatial component of the spin current [see also Johnson (1984) and Freed
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(1985), whose treatment we follow]:

- i [ 5 (e 50) w51
Jo= T Loy, o \P X o) P \P )P (8.10)

where J; is the ith component of the spin current (each component is a
vector) which describes the flow of the spin polarization P. The polarization
per atom P is defined by P = Tr(po) where o represents the Pauli spin
matrices and p is a single-particle density matrix. D, is the usual spin
diffusion coefficient; € = +1 for bosons and —1 for fermions, and u is a
temperature-dependent parameter which describes the importance of the
identical-spin rotation effect. Lhuillier (1983) gives values of u for H{{,
D}t and *He$ in terms of certain collision integrals. u diverges as T '?
in the low-temperature limit, as shown in fig. 8.3. We also show her results
for the thermal conductivity of H{ for several values of nuclear polari-
zation in fig. 8.4, and the transverse spin diffusion coefficient as a function
of temperature in fig. 8.5.

1 I

L >
8 9 10TK)

T(K)

.c;;W

Fig. 8.3. Identical-spin rotation coefficient u as a function of temperature in H| (after
Lhuillier 1983).
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Fig. 8.4. Thermal conductivity in H| as a function of temperature for several values of nuclear
polarization: M =0, 0.6, 0.8 and 1, in sequential order (after Lhuillier 1983).

The spin polarization P is subject to a continuity equation

aP

d
LY L p=yPxB :
dt Z axl ‘,I Yn 0> (8 11)

where B, is an applied magnetic field and vy, is the nuclear gyromagnetic
ratio. (The spatial gradient is written as a sum over components to avoid a
notational difficulty with doubie vectors.) Combining eqs. (8.10) and
(8.11), one finds the nonlinear spin diffusion equation

P [ {aP ( 6P>
—_— —_— x ——
o ~v.PXBy= D, zl, 1+IJ«P ep\P o

i

+ ,LZ(P- %)P” . (8.12)

This is identical to the Leggett—Rice equation (Leggett 1970) derived for
’He. Leggett showed that the rotation arose from a molecular field type of




344 LLF. SILVERA AND J.T.M. WALRAVEN [Ch. 3, §8

Dlp“ (107 m! kg s

1
1077 mTkgs™

5_
4L~
3l ..
S '///
7] ////
Sl
/ 17
W
4
/’/'||11||1||1

Fig. 8.5. Transverse spin-diffusion coefficient as a function of temperature in H{ for several
values of nuclear polarization. The full curve corresponds to zero polarization (after Lhuillier
1983).

interaction. Lévy and Ruckenstein (1984) have also formulated the
dilute-spin problem in a similar formalism using the Hartree—Fock approx-
imation. They found that the identical-spin rotation effect can be cast in
terms of a molecular field aP(r,t) where a can be evaluated from
scattering considerations, including exchange effects. Since this molecular
field is parallel to P it cannot affect the precession rate in eq. (8.11), but it
enters into an equation similar to eq. (8.12), which we shall not discuss
here.

As we shall now see, eq. (8.12) has oscillatory solutions with frequencies
in the neighborhood of the Larmor frequency. If B, is uniform, then a
long-wavelength rf field can only couple to the uniform precession mode,
and the spin-wave modes are not observable by means of a usual dipole
field type of pick-up coil. However, a field gradient breaks this symmetry
and the modes can then be observed.

In order to obtain insight into eq. (8.12) we take (P) along z with a field
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gradient G, = 8 By/8x in the x direction and linearize the equation to find

P, . D,(1—ieuP,)
3; +iy, 8 B,P, = W v’P,, (8.13a)
3P, /3t= D,V’P,, (8.13b)

where P, = P, +iP, and |P,|<|P,|. These equations are for the frame
rotating at the Larmor frequency. We see that P, obeys a normal diffusive
equation. The transverse polarization P, obeys a Schrodinger-like equa-
thIl where v,8B, plays the role of the potentlal energy, {Dgep/(1—
u’P?)}V?P, the kinetic energy, and {iDy/(1+ p ’P*)}V?P, is a damping
term Wthh is small for wP> 1. The boundary condition (Lévy and
Ruckenstein 1984) n - VP, = 0 at the surface (with normal n) corresponds to
J,-n=0.If we set the gradient G, =0, ignore damping and assume a
solution of the form exp[i(wt— gz)] we find P, =P ,cos g,z with
=Imw/L, where L is the length of a one- dlmensmnal box and [=0,
1 2,. ... The dispersion relation is @ = —DyeuP,q:/(1+ p ’P?). These
modes bu1]d up off the Larmor frequency (uniform) mode in frequency
space, and as already stated cannot be detected by usual techniques.

With the addition of the gradient term the situation changes. This
equation has been studied by Lévy and Ruckenstein and reviewed by
Freed (1985). The solutions are Airy functlons and the spin-wave frequen-
cies are w, ~ 2(7qy,G,)" *[DyenP,/(1+ u’P 1

Spin-waves were observed in H{{ by Johnson et al. (1984); their results
are shown in fig. 5.19. In fig. 8.6, we show a fit of the theory described
above to the experiment, including damping. These experiments used
pulsed NMR techniques with small tipping angles. For large tipping angles
the linearized equations are no longer applicable. Lévy (1985) has made an
extensive analysis of the nonlinear equations and finds several new
oscillatory modes.

The experlmental coupling to the spin-wave modes by a transverse rf
field, b,(r), results in a measured signal proportional to | P, (r)b(r) d’r.
For a field b (r), uniform over the sample, coupling exists only to the
uniform mode (g, =0), which is uninteresting. However, due to the
gradient field G, P,(r) is nonuniform and the 1ntegral is nonzero.
Tastevin et al. (1985) have observed spin-waves in gaseous ’He? by using
a nonuniform field b,(r) generated by a quadrupole field coil with a similar
pickup coil at 45°.

The current discussion has been concerned with nuclear spin-waves.
Another possibility is electronic spin-waves. Two ESR experiments (van
Yperen et al. 1984, Statt et al. 1985) have been carried out on H|{ with no
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Fig. 8.6. A fit of the linearized spin-wave theory to experiment including damping terms
(after Lévy and Ruckenstein 1984).

evidence of spin-waves, however, the experiments were not designed or
optimized to observe these effects, although gradient fields were available.
Bouchaud and Lhuillier (1985) have recently analyzed spin-waves for the
four hyperfine states.

Lhuillier and Laloé (1985) have compared their density-matrix approach
to the Hartree—Fock molecular field approach and show that their
approach includes additional terms, i.e., it considers both forward and
lateral scattering, whereas the molecular field approach has ignored lateral
scattering.

9. Many-body effects on the surface

From the preceding chapters, it has become clear that the surface plays a
dominant and controlling role in the lifetime, decay, thermal equilibrium
and maximum density that can be achieved for a gas of atomic hydrogen.
Should one be left with the impression that “the surface is the work of the
devil”? To a certain extent we shall see that indeed, were it not for the
surface, effects of quantum degeneracy would easily have been observed
by now in H| and D|. On the other hand we shall also see that the surface
is “the icing on the cake”, responsible for many new and strange
phenomena.
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9.1. ADSORPTION ISOTHERMS
We first discuss the adsorption isotherms of HJ, the relationship between

the surface and gas density at constant temperature. In the introduction,
eq. (1.9) and (1.12), for the ideal noninteracting gas, we found

1
3 8 exp(u/kT), (9.1a)

th

N,

"Ty
1

o=~ In{l —exp[(n, + &)/KT1} . (9.1b)

th

Here we have set the degeneracy g = 1. In thermodynamic equilibrium the
surface chemical potential u, is equal to u, the bulk chemical potential. For
this noninteracting picture, when u = —¢,, o diverges and thus u is
prevented from going to zero, the condition required for Bose—Einstein
condensation. Silvera and Goldman (1980) and Edwards and Mantz (1980)
realized that interactions between the surface state atoms would resolve
this problem of the ideal gas. If the effective interaction between surface
H| atoms is repulsive, then at high enough density this contribution to the
energy will just balance the adsorption energy and u,— 0.

The interaction Hamiltonian is similar to eq. (8.6),

H= Z {— —V+ Uext(r)} + % > V() - (92)

irj

For surface atoms U, , =V, (z) (eq. 4.1 for the adsorption potential);
U,,.=0 for bulk atoms. We ignore the contribution of any external
magnetic fields to U,,, as this would contribute an identical energy term for
both the bulk and the surface and only give rise to a shift in the zero of
energy. V(r,) is taken as the triplet Kolos—Wolniewicz potential for both
the bulk and the surface. The effective range form of the interaction, eq.
(8.7), is also used here, however, the scattering strength v, is in general
different for the bulk and surface state atoms.

For the adsorption isotherms we use a Hartree—Fock approximation
which yields three equations. Two of these, for the bulk, are identical to
egs. (8.8a, b), however, without the magnetic interaction which is common
to bulk and surface.

2
[ B 2ﬁ_m V?+200n, + 200'10] & (r) = 6,4, (r), k#0, (9.3a)

52
[ “2m V4 204n, + vo”o]¢o(’) = £3(r) (9.3b)
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[ — 5=V +wo+ Veff(z)]qbsq(r) =£,(n) ¢(r). (9.3¢)

Here n=n_ + n, is the total bulk density and »_ and n, are the normal
condensate densities; the £’s are the corresponding single-particle ener-
gies, and v, and v, are the interaction energies in the bulk and on the
surface; ¢,, ¢, and ¢, are the condensate, normal and surface wave-
functions. The densities are defined by

nnzgo Nk|¢k(r)|27 0'=§q:0'q|0'sq(r)|2’ n0=NO|¢0(r)|2 .

Here N, = {exp[(e, — u)/kT] — 1} "' is the number of ground state atoms,
N, = {exp[(e, — u)/kT}—1}"" and o, = {expe,, — u] - 1} 7", where u
and p_ are the bulk and surface chemical potentials. The single-particle
energies, to first order, are &, = (A°k*/2m) + 2vyn, + 2v4n, & = 2v4n, +
Uohg and g, = (k*q*/2m) + 2v,0 — €,. Note that if two particles are in the
same state then the interaction is v n, whereas if they are in different states
the term is 2vu,n. Thus interactions between condensate particles are two
times smaller than interactions between normal particles. Bose-condens-
ation is rigorously forbidden in two dimensions (superfluidity is not), so
that for surface interactions the factor of two is present for all 7. This is
explicit when comparing eqs. (9.3b) and (9.3c) where for T=0K, n, =0,
n,=n. :

Let us now consider the thermodynamic properties. In the interacting
Hartree—Fock picture the chemical potential is replaced by

u—pu+2v,n and p—>p +2vo, 9.4)

in eqs. (9.1). The T=0K limit is simple and interesting. At equilibrium
the chemical potentials for the bulk and surface atoms must be equal:
2vyn = —g, +2v,0, or

L,

o=0,=5-+—n
= Ysar T .
2v5 sz

(9:5)
At T=0K, as atoms are introduced into the system, they occupy only the
surface states until these states are saturated at £,/2v,; they then start
populating bulk states. For low densities, nv, < ¢,/2 and o, is essentially
constant up to bulk densities of order 10°°/cm® where the second term in
eq. (9.5) starts to become important.

The value of v, was determined by Silvera and Goldman using a
two-dimensional hypernetted-chain calculation yielding v, =6.9 X
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107" K cm? in good agreement with a calculation of Lantto and Nieminen
(1980) who found 6.5 X 107" K cm® by a different method, and another
result of 9.7 x 10™"* K cm” by Miller and Nosanow (1978) who used a
Lennard-Jones potential. These two-dimensional models may be too
restrictive as the particles have no freedom to avoid each other in the
z-direction. Edwards and Mantz used a less restrictive model in which the
wavefunction extended in the z-direction. They found a value v, =
5x107"* K cm®. Goldman and Silvera (1981) realized that a factor of two,
due to exchange effects amongst identical particles, had been neglected
(see eqgs. 9.3). Applying this correction to the Edwards—Mantz interaction
gives 2v,=1x10""K em’ or o, =¢,/2v, =0.96 X 10"/cm® using a
value of 0.96K for ¢,; the calculated value of v, is 0.52 X 107 K cm”.

For finite temperatures the substitution (9.5) is used in egs. (9.1) which
can be solved numerically with u, = p. The resulting adsorption isotherms
are shown in fig. 9.1. At low densities the behavior is well described by eq.
(1.7). However, as n_is approached, the curves flatten out and the critical
density for BEC is only achieved after the surface is saturated. This can be

50 mK
Line of Critical mK
C OmK
overages S0mK
for 2 Dim. Critical Densities 2()0mKK
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Fig.9.1. A plotofthe adsorptionisothermsof H{{ withe, =0.96 Kand o, = 0.96 X 10"/cm?
for various temperatures. The T = 0K isotherm corresponds to BEC for all values of n and
intersects the o-axis at o, for n—0. For each isotherm BEC occurs at the density n
corresponding to eq. (1.1) with g = 1 and occurs for o > o,,. We also show the line for the

Kosterlitz—Thouless transition, eq. (9.8). In this case only the o-axis is meaningful.

sat”
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understood since one cannot have a macroscopic population of the k=0
bulk state and have yet unfilled surface states, lower in energy. We also
note from fig. 9.1 that if the critical density for BEC n_= ¢,/2v,, then the
adsorption isotherms are almost classical in behavior. In all cases at BEC
o= o, which is an extremely important result. The value of o, is so
large that second- and third-order surface recombination make it extreme-
ly difficult to saturate the surface, which is required to achieve BEC in
thermodynamic equilibrium.

It is also interesting to study the adsorption isotherms in a regime where
the critical density n_ > ¢,/2v,. To do this we maintain the value of v,
and v, and reduce the value of ¢, by two orders of magnitude to 9.6 mK.
The resulting adsorption isotherms are plotted in fig. 9.2. For a very low
temperature isotherm (10 mK) we observe the same behavior as in fig. 9.1.
However, for higher temperatures corresponding to higher critical den-
sities, the isotherms cross substantially beyond the T =0K isotherm and
the surface densities increase beyond the value of o, for T=0K (eq.
9.5), before the critical density is achieved. This is a large effect: for n = n,
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Fig. 9.2. Same as fig. 9.1, but for a fictitious value of £,(=0.0096 K), reduced by a factor of 100. In

this case we see the effect of the gas phase interaction energy and BEC occurs for surface

coverages substantially greater than that of the T=0K isotherm. Note that the line for

two-dimensional superfluidity shown in fig. 9.1 does not appear, as the required values of o do
not exist.
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on the 300 mK isotherm, o =1.6X 10" cm ™2 more than an order of
magnitude larger than the zero-temperature saturated density, o, =
e,/2v,=0.96 X 10'2 cm 2 In reality, if &, were reduced by two orders of
magnitude, this would also reduce v, since the surface states would be more
extended normal to the surface. Note that in this regime, isotherms for
different temperatures clearly cross each other; however, the lower
temperature isotherm is always at a density above its critical density, 7.,
and the higher temperature one is always below its critical density at the
crossing.

In summary, for this situation, if a surface existed with such a low value
of ¢,, the experimental strategy to minimize surface recombination would
be to work at low temperatures so that o = ¢,/2v, at n_.

In eq. (5.13) at BEC for a pure b-state gas, the term

€ A\ A U-Sa } S
be)fb:Kbbb'*'V [ n‘] Kibs (9.6)

C

is expected to be the dominant loss term, with the surface contribution
being larger than that of the bulk. When using *He surfaces instead of ‘He
ogies, ‘fﬂrqom eq. (9.5), we find that o, can be reduced bly4 a fz;ctor of
£,7°/¢.,7°=0.35 from the calculated value of o, =1x10"/cm". Thus,
the surface recombination rate will be reduced by a factor of 23. The
calculated value of o, is also a bit pessimistic as it uses the approximation
that the total surface energy depends linearly on o. From Lantto and
Nieminen’s (1980) calculation of the density dependence of the surface
energy, one finds that the interaction energy is increased to about twice
that found from the linear extrapolation to densities of order 10"*/em?, so
that the expected value for o, should be even smaller.

Some of the approximations used in these calculations have been
checked by Mello et al. (1983) who performed a QM virial calculation in
two- and three-dimensions. They found that the effective range theory is a
very good approximation in the region 7 <1K and the s-wave scattering
theory also gives good results. Their calculation of the temperature
dependence of the interactions by means of a virial expansion to correct p
does not give a serious change to the results of Silvera and Goldman or
Edwards and Mantz. Kagan et al. (1982) have also considered the problem
of interactions and dimensionality in quasi two-dimensional situations.

9.2. TwO-DIMENSIONAL SUPERFLUIDITY

In two dimensions for finite temperatures there can be no macroscopic
population of the zero-momentum state (Hohenberg 1967), i.e., no
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Bose—Einstein condensation. Nevertheless, Edwards and Mantz (1980)
pointed out that H| may have a Kosterlitz—Thouless transition (Kosterlitz
and Thouless 1978) to a two-dimensional superfluid state, such as that
already observed in “He films. The transition occurs at a critical temper-
ature

T = n#’p,/2km’ , 9.7)
where m is the hydrogen mass, k is the Boltzmann constant and p_. is the
superfluid mass density (p, = mo) just below T2°. At TP, p, changes
discontinuously from zero to p,. (Nelson and Kosterlitz 1977). In order to
evaluate T2 the fraction p,/p, must be determined. Edwards (1982) has
estimated p,. = p, using resuits of Saam (1981). Evaluating gives 7" =
0.756(c /1 x 10'*) with o in atoms/cm’® and T-° in K. The line o versus
T?2P is shown in fig. 9.1. Since high values of o are difficult to achieve,
evidently for values of o, in the figure, it is easier to achieve two-
dimensional superfluidity than BEC. Superfluidity in two-dimensional
films of H| has also been theoretically studied by Shevchenko (1982).

9.3. HYDRODYNAMIC MODES OF TWO-DIMENSIONAL H|

In this section we consider the possibility of detecting H on a surface of
helium by studying the hydrodynamic modes of the film. Insight can be
obtained by considering the modes of a helium surface, and we first briefly
review the litany of theory and experiment.

A free surface of *“He with depth d has capillary or ripplon waves with
dispersion relation

3
w?= ( gk + %) tanh(kd) , | (9.8)

where g is the gravitational acceleration, a the surface tension, k the wave
vector and p the mass density (Atkins and Rudnick 1977). Such waves
which are dominated by the surface tension term for k = 100 cm”! have
been observed experimentally by optical techniques. Andreev and Kom-
paneets (1972) predicted the existence of a second propagating surface
wave which they called surface second-sound. This is an adiabatic wave in
the density of ripplons (similar to bulk second-sound in *He) and could be
detected as a temperature wave. This wave has never been observed, and is
evidently highly attenuated. They also predicted a propagating adiabatic
wave for *He localized at the *He surface, which has been observed by
thermal detection techniques (Eckardt et al. 1974).
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For thin films of a normal fluid which are strongly clamped to the
substrate, surface waves cannot propagate due to viscous damping. For
superfluid *He, although the normal component is clamped to the sub-
strate, the superfluid component can oscillate as third-sound waves (Atkins
and Rudnick 1977). Since the superfluid carries no entropy, the build-up of
superfluid at the wavecrests lowers the temperature there, while the
depletion at the troughs raises the temperature. Thus third-sound waves
can be detected thermally as well as mechanically due to mass amplitude
fluctuations. The dispersion relation for a film of thickness d is

w= %fdk, (9.9)

where p, is the superfluid density, p the total density and f the restoring
force exerted by the substrate on the film. If the long-range substrate film
potential is —c/d’, then f= 3¢/d®. Third-sound has been extensively
studied by experimental techniques. In a thin-film mixture of *He—"He, the
two species are believed to phase separate with the *He on top of the ‘He.
This system has been studied theoretically and experimentally by Ellis et
al. (1981). They found that the normal *He film loaded the ‘He, reducing
the third-sound velocity, in agreement with theory. However, there is
some controversy here as McQueeny et al. (1984), who have also studied
*He-*He films, believe that a solution model is more appropriate.

With this review of helium surface waves, we are now in a position to
discuss the expectations for H|.. The case of H| on ‘He is quite similar to
>He on “He. The two systems phase separate with the H| on top of the
“He. However, H|, is a boson (*He a fermion) and is predicted to have a
Kosterlitz—Thouless—Nelson superfiuid transition. The H| is also limited
to (sub)monolayer thicknesses. Guyer and Miller (1981,1982) have
studied this problem theoretically. They used a model in which the *He had
a thickness 4, and the incompressible H| a thickness 4, Both *He and H|
were attracted to a substrate by a d~° Van der Waals potential. If both
components were superfluid, they found two coupled third-sound modes at
each value of &, one corresponding to the “He, the other to the H|, both
being shifted from their value for a single-component system. If the H{ is
normal, the third-sound velocity of the “He mode would be shifted by an
amount proportional to the H| coverage. Thus, third-sound measure-
ments which appear to be within the range of experimental detection by
capacitive techniques should enable a direct detection of the surface H|
coverage, and, according to Guyer and Miller, should give a clear and
unequivocal demonstration of superfluidity in H|. However, Williams
(1984) has pointed out that detection of a second propagating mode will
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not be unequivocal proof of superfluid H|, as the second-sound surface
mode of Andreev and Kompaneets may not be attenuated for the normal
H|.

Guyer and Saslow (1983) have presented a T'=0XK calculation which
removes some of the unappealing aspects of the Guyer—Miller model.
They introduced a single (or sub) monolayer of H| with variable
superfluid density o, which is compressible but unlimited in extent in the
z-direction, (as compared to an incompressible film of fixed density o, with
variable thickness 4,). The film was coupled to a rigid substrate, but
instead of using a d > Van der Waals potential they modeled the substrate
potential with a short-range (exponential) Morse potential which has an
analytical solution. For low coverages the H overlayer is localized several
A away from the surface (see fig. 4.1). For o— o, they found the H|
surface density extended more than 20 A from the *He surface as shown in
fig. 9.3.

Results of Guyer and Saslow’s calculations for the third-sound velocity
are shown in fig. 9.4. The velocity increases with coverage and then softens
as the film saturates. They ascribe the softening to a weakening of the Van
der Waals force on the part of the H| density that resides far from the
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Fig. 9.3. The density distribution of a superfluid film of H| on *He for several values of olo,,
(after Guyer and Saslow 1983).
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Fig. 9.4. The third-sound velocity as a function of H| surface coverage (n) (after Guyer and
Saslow 1983).

surface. Although this is reasonable, their calculated, reduced frequency
may not be as significant as shown in fig. 9.4 as they replaced the Van der
Waals potential with a Morse potential which falls off much faster at large
distances.

10. Prospects for spin-polarized hydrogen

With the creation of long-lived gas samples of spin-polarized hydrogen and
deuterium, a low-temperature field of study concerning new Boson and
Fermion quantum gases has been opened. In this final section we shall
discuss some of the challenges facing experimentalists seeking to study
these systems in the limit of quantum degeneracy. Our objective is to
present possible approaches for achieving these goals and to discuss the
formidable problems which are posed. As with any new system the
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application of ideas utilizing new properties and techniques can extend into
new areas. We shall briefly mention some of these applications, many of
which have been discussed in greater detail in the review by Greytak and
Kleppner (1984), and then concentrate on quantum fluid aspects.

10.1. APPLICATIONS

An exciting possible utilization of the techniques developed for stabilizing
atomic hydrogen is the construction of a cryogenic hydrogen maser.
Currently, the most stable time and frequency source is the room-
temperature hydrogen maser (parts in 10'® stability over periods of hours).
The major intrinsic source of line broadening is spin-exchange scattering.
At low temperatures the cross section is reduced by a few orders of
magnitude which may translate into a substantial improvement in stability.
The increased lifetime in a helium-covered cell may provide higher density
and thus power advantages which can be used for increasing the stability.
The room-temperature maser is not a primary standard because the
frequency depends on the wall shift. The teflon coated walls can slowly
become contaminated, giving rise to a small but important variation of the
frequency. It is believed that the ‘He covered walls of a cryogenic
hydrogen maser would overcome this difficulty. Many of these aspects
have been analyzed by Berlinsky and Hardy (1981).

Cold sources of H and D in atomic physics can be used to greatly reduce
Doppler broadening in precision spectroscopic studies. In high-energy
physics nuclear polarized samples can be injected into accelerator beams to
study spin-dependent scattering off from polarized targets. In fusion
physics spin-polarized D]} may be used to enhance the fusion cross
section and energy yield in a plasma fusion reactor (Kulsrud et al. 1982). The
use of a dense H| target may simplify experiments for the study of the
positron—H| cross section. Finally, we mention that a gaseous atomic-
tritium source may be used for precision measurements of the rest mass of
the neutrino in B-decay, with the advantage of having a well-defined
atomic final state in the decay process.

10.2. GOALS IN THE STUDY OF QUANTUM FLUIDS

The most prominent goal for researchers in atomic hydrogen is to produce
hydrogen in a state of Bose—Einstein condensation. For any density below
about 10?'~10**/cm’ this would be the first clear experimental example of a
weakly interacting Bose gas [see, however, Crooker et al. (1983), who see
very similar behavior for thin films of “He in vicor glass]. A great deal of
theory which has never been tested under ideal conditions exists for this
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Fig. 10.1. The equation of state for a weakly interacting Bose gas for three values of the

interaction strength a' = ng,/kT,, where v, is given in eq. (8.7). P, and n, are the pressure

and density of the noninteracting gas (a’ = 0) at the transition (after Greytak and Kleppner
1984).

system [see the review by Greytak and Kleppner (1984) ch. 3, for a
summary of these properties]. Clearly, successful achievement of BEC
would open the door to studying a remarkable array of predicted
properties, including superfluidity in a gas. Moreover, new unexpected
phenomena are likely to emerge. Thus, the first and most burning question
is “how does one experimentally manipulate a sample to detect the state of
BEC?”. An obvious technique is to measure the equation of state (EOS)
or the compressibility. The characteristic behavior of pressure versus
density for an isotherm is shown in fig. 10.1. For the noninteracting gas, p
is constant for n > n_, the critical density. Interactions, represented by the
parameter a’ in the figure, result in an increase of p at n., but the curve and
its derivative (compressibility) are still quite characteristic of BEC.

It is clear to any reader who has read through this review that techniques
are available to measure p, n and T (see section 5.12), and thus the EOS.
The problem, however, is to achieve a sufficiently high density or low
temperature. The highest density yet achieved (Hess et al. 1984) of
4.5% 10" cm™* was at T=570mK (T, =43.5mK for this density). The
lowest temperatures of study, T ~60-70 mK, have been achieved with
bulk densities probably in the range of 10'°-10"%/cm? (corresponding to T,
of 159-740 pK). The source of these problems is also clear. At both high
and low densities, recombination heats the sample and cell or is sufficiently
rapid that a high density cannot be built up. The heating problem can be of
two sorts:
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(1) the heat load is so high that the temperature of the refrigerator rises,
or

(2) the gas sample itself heats up due to thermal gradients and Kapitza
resistance so that the gas is not in equilibrium with the cell walls.

10.2.1. Compression of bubbles

The first problem mentioned above can be resolved by using small samples
(the bubbles mentioned in section 5.12) so that the total heat load is
reduced. Let us analyze the heating problem in a bubble at BEC (Silvera
1985).

We discuss and encounter some of the experimental problems by way of
a numerical example. For the sake of clarity we do not parameterize the
problem to find an optimum configuration, but rather use a typical
situation to demonstrate some of the difficulties that arise. Assume that we
seek to attain BEC with a critical temperature, T, = 100 mK, correspond-
ing to n, = 1.57 X 10""/cm’. A bubble of H|} with radius r is created in a
vessel of liquid ‘He (see section 5.12) at this temperature with n <n_. As
the pressure is increased at constant T, the density increases and sweeps
through n_. Thus, we can trace p versus n at constant T to determine the
EOS. The H{¥ sample is under a pressure p = p, , + p,, where p, , is the
hydrostatic pressure due to a column of liquid helium and

P =2alr (10.1)

is the pressure due to surface tension, @ =3.78 X 10~* N m . For bubbles
somewhat smaller than one millimeter in diameter, p_, alone can be
sufficient to pressurize H{{ into BEC. Due to recombination in the
bubble, r shrinks and p,, increases. From egs. (1.11) and (10.1) we see that
the critical pressure is proportional to T°'* and the critical radius is
r.=67.9(100/T.)"’%, with T, in mK and r_ in pm. For the conditions
T.=100mK and n,=1.57 x 10"/cm’, r,=67.9 um and 2 x 10** atoms
are in the gas phase of the spherical bubble. We establish a bubble having
r > r. and monitor p and n during its decay. We first determine the decay
rate. From an analysis of bubble decay (Sprik et al. 1985), one finds that
the inverse time constant of the bubble of volume V is

_ 1% A ?
r\(V)= —y= [20;1<;bb + (V)<Un_> 20;K;,,b]n2 ) (10.2)

All of these terms are known and 7' =(1.79 + 6.84) =8.63s™ ', or 7=
116 ms, where we have taken o,,, =5 X 10"*/cm” The power dissipated is
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—ND,/2 (D, is the dissociation energy) or ~N = —iV=1.8 X 10'* s~ ' and
Q =66 pW.

We make a few remarks at this time. 66 uW at 100 mK is a heat load
which a moderate sized *He—*He dilution refrigerator can handle. A decay
time of 116 ms (time for volume decrease of ~1/e) is rapid, but a
measurement time of 10 ms/point seems possible. We note from the
calculation of 7~ ' that the decay is dominated by the surface term. This is
quite unfortunate since otherwise one could use smaller bubbles to reduce
this contribution to the heating, as A = 477>, Larger bubbles with lower T,
have greater heat dissipation due to the larger area (of course we could
compress these with p, 4 to reduce the area, but as already stated our
object is to trace through one example).

Now the most important question is ‘‘can the temperature of the bubble
be maintained at 100 mK in the presence of the released recombination
energy?”. First assume that all of the recombination energy is dissipated
uniformly in the H|{ gas. There are two heating problems:

(1) the thermal gradient across the bubble due to the finite thermal
conductivity of the gas, and

(2) a thermal step at the boundary due to the Kapitza resistance.

We first calculate gradients due to thermal conductivity. For a density of
1.57x 10" cm >, using data from Lhuillier (1983), the collision mean
free-path A_, =3« /(nC,v) =0.7 pm, where « is the thermal conduct1v1ty
and C, the specnﬁc heat. The thermal gradlent is AT = (1/15)(Q/V)r¥ix
(Sprik et al. 1985). Using k =3.5x 10" *W/Km, we find AT >1K.

Next we consider the Kapitza resistance. Usmg expression (4.13a)
with @ =0.3 we find 0=8.6x10" SATWK ™!, or AT=750mK for
T =100 mK. With this type of heating the bubble will explode due to the
thermal instability observed by Sprik et al. (1983) and Tommila et al.
(1984), and studied by Kagan et al. (1984).

The problem is thus the following: the gas develops a large thermal
gradient and the heat cannot be conducted out through the He walls fast
enough. What can be done to help? Certainly the example used is not an
optimum, but the problem is severe enough that major improvements are
required. One would be to use *He surfaces which reduces a,,, by a factor of
about0.35, or the heating due to surface recombination (proportional to o)
by a factor of 23 (we ignore changes in bubble size for T, = 100 mK due to the
reduced value of the surface ten51on for *He). This alone would be a major
gain. However, the use of *He—~*He mixtures, to create “He surfaces
introduces another problem since the thermal conductivity of *He-*He
mixtures is a few orders of magmtude lower than that of pure ‘He
(Rosenbaum et al. 1974) and the ’He-"He itself may develop thermal
gradients.
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The situation for the bubbles, as stated, may be pessimistic. For
example, not all of the recombination energy goes into the gas. As pointed
out by Silvera (1984), it may be possible for molecular H, formed by
recombination to go directly into the liquid and relax there without
transferring energy to the gas. In section 6 it was shown that the initial
recombination step divides ~70 K of energy (of the 51967 K available)
between the excited molecule (H}) and the spectator atom. The average
number of collisons to relax from one state to another of HY may be of
order 10° (the splittings between levels of H? is large compared to the
kinetic energy so that the integrals representing relaxation cross sections
will be small due to the oscillations in the wavefunctions). Thus, it might be
advantageous to use very small bubbles, even though the density and T,
will be higher.

The purpose of this discussion on bubbles, which ends here, was not to
be definitive, but to demonstrate with numerical examples some of the
problems facing the experimentalists.

10.2.2. Traps for low-field seekers

Recently Hess (1985) has proposed a scheme for magnetic trapping of
hydrogen at 20 mK and cooling to temperatures below 10 pK by “evapor-
ation” to obtain BEC. Although the information available in his abstract is
limited, we shall discuss what we believe to be possible advantages and
problems.

The great advantage of a trap is that one rids the system of helium walls
which catalyze recombination. Unfortunately, it is not possible to create a
static magnetic field in charge- and current-free space which has an
absolute field maximum. Any maximum of a component is always a
saddle-point (Wing 1984). In a standard solenoidal geometry (fig. 5.2) the
atoms are compressed in along the axis to the field center; they are forced
radially outwards resulting in higher densities at the confining side walls.
Maxwell’s equations do allow static local magnetic-field minima, with |B|
not necessarily zero at the minimum. Since states a and b of fig. 2.1 are
high-field seekers, it is not possible to trap H| with a static magnetic field.
On the other hand, states c and d are low-field seekers so that it is possible
to trap H? in a field minimum. Pritchard (1983) has discussed magnetic
trapping of neutral atoms in such fields.

H? is a perfectly acceptable two-component thermodynamic system
which can Bose condense. The important questions are ‘“‘can a trap be
filled, can the trapped atoms be cooled, what are the lifetimes for decay to
H| or H,, and how are the trapped atoms detected?”.

Several methods can be used to produce HY. ¢ and d-state atoms can be
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collected by passing an H atomic beam through a hexapole magnet, which
focuses c- and d-state atoms and defocuses a- and b-state atoms. Alternate-
ly, a 180° ESR pulse on H{, in a high magnetic field will convert H| to HT,
which is then ejected to low field. Still another technique is to use a field
gradient at low temperature which drives H{ to high fields and H? to low
fields. Whatever the technique, Hess proposes to thermalize the H on
20 mK walls. The field would then be activated to trap and isolate the
atoms from the He walls. The trapped atoms can then be cooled by
reducing the trapping gradient so that hot atoms “‘boil”” out of the trap and
stick to the He walls. The remaining atoms thermalize by collision and cool
to temperatures less than 10 pK, according to Hess. The density required
for BEC of a (uniform density) one-component gas at 10 pK is 1.6 %
10"/cm®. The gas could possibly be studied by NMR or ESR.

The greatest problem in this proposal seems to be the thermalization of
the atoms without their sticking to the wall before bemg trapped. Let us
estimate the equilibrium density, n. If the walls have a *He surface with
£, /k 0.34K, then from eq. (1.7), with T=20 mK n=c/30 with »n in
cm? and o in cm > The heating rate is 0 = K'o 2(D,/2)A. Usmg a value
of K*® (table 5. 1) corresponding to B=1T and A= 10 cm®, we find

o ~2 % 10" cm? for Q = 10 uW, which corresponds to the cooling power
of a moderate refrigerator operating at 20 mK. The result is n = /30 =
6.7 % 10® cm ™~ near the thermalizing walls surrounding the trap. Thus the
trap cannot be loaded from a fully thermalized gas. This means that the
atoms must have a moderate accommodation coefficient and a very low
stlckmg coefficient, o,. Jochemsen et al. (1981) measured o, = 0.016(5) for

’He at T'= 100 mK. Zlmmerman and Berlinsky (1983) calculated a,x T
so that at 20 mK, a, = 0.007, or an average of 140 bounces before stlckmg
The scaling of the sticking coefficient is somewhat questionable, as has
been mentioned in section 4, Zimmerman and Berlinsky did not use a
long-range potential in their calculation, which may be very important.
Measurements by Salonen et al. (1984) indicate that the Kapitza conduct-
ance is increasing with decreasing temperature. Since this is an energy
moment of a_, it means that a, probably also increases with decreasing 7.
In any event, filling of the trap may be a critical problem.

The final consideration is the lifetime of the sample. By assumption the
losses due to escape are acceptable and advantageous in the cooling of the
gas. The other mechanisms are:

(1) three-body recombination,

(2) spin-exchange decay, and

(3) electron spin relaxation from c, d to a- and b-states, which are then

ejected from the trap by the field gradients.
The first process is negligible. If the field B <500 G (0.05T) then c-state
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atoms will escape from the trap as their magnetic moment decreases in low
field (see fig. 2.1), leaving pure d-state, which trivially has no spin-
exchange problem. There are no accurate calculations of magnetic-
relaxation rates at low fields, and new decay channels open up, compared
to high fields (Kagan et al. 1981). A rough estimate indicates lifetimes of
order 1-10s for electronic relaxation with density 5 x 10%/cm’.

All told this seems to be a promising proposal although it is replete
with uncertainty, the largest being the filling of the trap and the question of
the cooling time of atoms in the trap which must be much shorter than the
decay time.

10.2.3. Traps for high-field seekers

Although it is not possible to make a static trap for the high field seeking a-
and b-state atoms, it is possible to make an ac or dynamic trap. This
problem has recently been analyzed by Lovelace et al. (1985). The
dynamic magnetic trap takes advantage of a principle used in strong-
focussing particle accelerators. Consider a solenoidal field B,(r) of the
form of eq. (5.1). The static forces on a magnetic moment are (ignoring
radial components of the field)

F,=pgByplz), F,=-2pgByziz;. (10.3)

The force in the z-direction is inward and leads to confinement of the a-
and b-state atoms, whereas the force in the radial direction is outwards and
leads to expulsion. The natural harmonic frequency w, for confined
particles is given by eq. (8.3b), w, = (2uzB,/mz2)''% Clearly, as discussed
earlier, this static field is nonconfining. Now, a dynamic trap can be
achieved if B, is superimposed on a large static field in the z-direction and
is modulated at a frequency w. On alternate phases, the forces in eq. (10.3)
are positive and negative since orientation of the magnetic moment in
space (or spin state) does not change. It can be shown (Landau and Lifshitz
1976) that at a sufficiently high frequency (in practice, of order kHz or
greater), the particles undergo a slow motion corresponding to the natural
motion (without the ac field) and a fast ac motion. As a result a particle will
oscillate with amplitude ¢ at frequency o about the slowly varying
coordinate p,(¢) such that the particle has larger displacements from the
origin, |p,| + | £|, during the phase when the force is inward and | p,| — | |
when the force is outward. Since the force is proportional to p, there is a
net inward force. This holds for both F, and F, so that the particle is
confined.

Lovelace et al. (1985) have simulated such traps and find that fields of
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order of 1T at a few kHz are required to trap a gas at a temperature of a
few mK. The gas can be cooled by reducing the amplitude of the confining
field so that hot atoms can escape and stick to cold walls. Internal viscous
heating due to the interaction of the atoms with the ac field puts some
limitation on the cooling.

There are some experimental difficulties with the dynamic trap. A very
careful design must be made to avoid eddy current heating of the
refrigeration system. The most serious problem, again as discussed for the
static trap, is to fill the trap with a gas at a temperature of a few mK. The
advantage over the static trap is that the atoms are in the two lowest
hyperfine states so that the lifetime will not be limited by electronic spin
relaxation.

10.2.4. Two-dimensional superfluidity

The final subject that we shall discuss is two-dimensional superfluidity. At
this time the most sensitive means of detecting this phenomenon seems to
be by a study of thlrd sound in a pill box shaped resonator such as has been
used for studymg ‘He (Ellis and Hallock 1983). In this case H{$ would be
condensed on a ‘He film in such a resonator and the shift of the ‘He
third-sound mode or new modes due to H|$ would be sought (see section
9). The signals are estimated to be very small but within the sensmv1ty of
measuring techniques. A large uncertainty is in the stability of the “He film
thickness. Godfried et al. (1985) observed large variations in *He film
thickness during the H| filling phase of the hydrogen cell. Since the
frequency of the *He third-sound depends on the film thickness, the
thickness should be stabilized to parts in 10° to 10°. A second and perhaps
more serious problem for observing two-dimensional BEC is that it is
probably not possible to fill the pill box with a sufficient density of H{3 to
achieve the required coverages shown in fig. 9.1. In the geometry of Ellis
and Hallock the pill box resonator has a hole at the center for filling with
the condensable gases. If the hole is too large, the Q of the cavity will be
attenuated. Estimates indicate that the steady-state density in the cavity,
with flow-in through the hole of limited diameter as a source, and surface
recombination as a sink for atoms, is too low to achieve the densities required
for two-dimensional superfluidity. Nevertheless, suchan experimentatlower
coveragesmay give insightinto surface decay processes and allow one tostudy
a large region of the adsorption isotherms of fig. 9.1.

Although the pathway to the study of degenerate phenomena in these
quantum systems is filled with uncertainty, the rapid developments and
many new ideas which have emerged in the past several years encourages
experiments and theorists alike to meet the challenge of nature.
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