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Antihydrogen at sub-Kelvin temperatures
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We discuss the behavior of magnetically trapped antihydrogen (H) at temperatures relevant
for gravity and spectroscopy experiments (well below 1 K) and the possibilities of attaining
these temperatures. Two possible options are considered. In the discussion of the first one, i.e.
H as admixture in cold H gas, we develop the quantum-mechanical theory of H-H (and also p—
H) elastic and rearrangement collisions at ultra-low (sub-Kelvin) energies, when s-wave
scattering in the incoming channel dominates. The rate constant of rearrangement leading to H
decay turns out to be large, which makes the possibilities for H collisional cooling in H gas and
H-H coexistence rather limited. As we show, the most promising is the other option, i.e. H
atoms in the collisionless regime. For this regime the possibility of one-dimensional adiabatic
cooling of H is demonstrated by using the example of the Ioffe trap. This phenomenon,
interesting from the fundamental point of view, offers the opportunity to cool H below 1 mK.

1. Introduction

In recent successful experiments up to 10° low-energy antiprotons were
accumulated and studied in an electromagnetic trap at low temperature (~ 4 K) [1].
These experiments open a realistic possibility to create and study the bound state of
the antiproton with a positron, i.e. antihydrogen (H). Being the simplest
representative of neutral antimatter, H attracts great interest from several points of
view. The creation of antihydrogen offers a unique opportunity to test CPT-
invariance and the weak equivalence principle by gravity experiments with H [2].
Precise CPT checks can also be obtained from spectroscopic measurements of the
1S-2S transition frequency, Lamb shift and hyperfine transition frequency [3].
Especially interesting is also atom—antiatom interaction in a dilute gaseous mixture
of antihydrogen and hydrogen (H), first of all in relation to the fundamental
problem of matter—antimatter coexistence. \

In this paper we restrict ourselves to the most interesting option in which
antihydrogen will be produced with sufficiently low kinetic energy to enable
trapping in a neutral-atom trap and subsequent cooling to temperatures below
approximately 1 mK, where the conditions for gravity experiments and precision
spectroscopy are optimal from an experimental point of view [4,5]. Trapping is
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essential for accumulation of the produced antiatoms and to avoid annihilation in
collisions of H with surfaces. As was first demonstrated for the neutron, surface
free confinement is possible in a local magnetic field minimum for neutral particles
with magnetic moments antiparallel to the magnetic field (low field seekers) [6].

For atomic hydrogen (H) trapping was demonstrated in recent experiments with
the metastable spin-up polarized gaseous phase, Hf (electron magnetic moment
antiparallel to the field), at sub-Kelvin temperatures and densities ny in the range

101-10' cm3 [7-10]. The stability of H{ is limited by spin relaxation in pair =~

collisions due to the magnetic dipolar interaction between the atoms. This results in
the appearance of H| atoms which are repelled from the trap. The rate constant of
this process ar = 10713cm3 /s, and the corresponding characteristic lifetime of the
system, Tq = (a,elnH)'l , ranges from 10* to 10 s for the above mentioned respective
range of densities. In practice, the magnetic well depth for H cannot exceed several
Kelvin, which implies the condition T'« 1 K for the temperature of HT gas to keep
the atoms trapped.

The lowest temperatures that can be anticipated for H depend strongly on the
selected method of cooling. Laser cooling is expected to be of limited use for H as
photon recoil will limit the minimum attainable temperature to ~ 1 mK. Much
lower temperatures can be reached with evaporative cooling as has been observed
in experiments with H [10]. In this method atoms with an energy that exceeds a
magnetic potential barrier (A) may escape from the trap leaving the remaining gas
at a reduced temperature. Since such atoms are mainly produced in elastic pair
collisions, the rate of evaporative cooling is proportional to the rate of elastic
collisions 7! = nga(v) (o =~ 10~15 cm? is the elastic scattering cross section, {v) is
the thermal velocity), which corresponds to a collisional time of tens of seconds for
ny ~ 10"'cm=3 and T ~ 1 mK. It is worth mentioning that the characteristic
cooling rate 7! ~ 77 lexp(—A/T) has to be chosen much slower than the elastic
collision rate but much faster than the magnetic relaxation rate (magnetic
relaxation gives rise to internal heating of the gas). The theoretical limit for
evaporative cooling is reached once this requirement can no longer be satisfied and
turns out to be below approximately 1 pK. At present, the lowest temperature
realized by evaporative cooling of His T ~ 100 uK [10].

Since the spin states of H in a magnetic field are identical to those of H (only
magnetic moments of particles should be inverted), one may expect that in the case
of surface-free confinement the properties of H | will be similar to that of HT.
However, there is a principle difference resulting from the much lower antihydro-
gen densities n that can be attained at present facilities, Even under most favorable
conditions n will be many orders of magnitude smaller than typical HT densities
(na ~ 10" — 10 cm™3). This makes evaporative cooling into an inapplicable
technique, since 7y ~ n~! should be anomalously large unless very small samples
can be realized. Thus, recalling the limitations of optical cooling, it definitely
requires serious consideration of other mechanics to cool H below 1 mK.
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In this perspective, there are two possible options for studying H. The first one is
to trap H | in the collisionless regime, i.e. at extremely low densities, with the
possibility of adiabatic cooling in mind. The second option is to introduce H | as a
small admixture into magnetically trapped H{ gas (or another trapped gas) and to
study the combined system. Aside from the prospect of collisional cooling of H, it
provides us with an interesting view on the fundamental aspects of the atom—
antiatom interaction as it manifests itself in collisional phenomena.

2. H-H and p—H collisions at sub-Kelvin energies

In this section we shall discuss collisional physics for H in H gas at ultra-low
(sub-Kelvin) energies, which involves both elastic and inelastic binary collisions. In
the limit of such energies s-wave scattering dominates (see below), and the relative
motion of colliding particles should be treated quantum-mechanically. We shall do
the same for p—H collisions, since these were actively studied at higher energies
corresponding to classical motion of colliding particles in the region of interaction.
This activity originates in the fact that p™—H collisions, similar to those of p—H, are
important for the problem of muon catalyzed fusion.

The collisional physics aspects are, first of all, determined by the interaction
potential U(R) (R is the internuclear distance) between the colliding particles. In
the case of p—H the interaction is fully attractive (see, e.g., ref. [11]). The function
U(R) <0 for R>ay rises monotonously with increasing internuclear separation R
and acquires at large R the asymptotic form U(R) = —}ae?/R* (a =3aj is the
polarizability of the hydrogen atom, ay is the Bohr radius, e is the electron charge).
At distances R < ay the adiabatic approximation breaks down — there are no bound
states any more for the electron in the field of the p—p dipole. Actually, at these
short distances the potential curve U(R) joins the ionization curve
U.(R) = —€?/R+1e?/ay (which corresponds to the p—p interaction), and a
rearrangement reaction (adiabatic ionization) may occur. The antiproton picks up
a proton and forms an excited bound state of protonium, and the electron is
ejected,

p+H—>Pn* +e. (1)

The Pn* rapidly decays through annihilation.

The interaction potential U(R) for H-H was calculated by Kolos et al. [12]. The
potential curve is of the same shape as in the case of p—H, the long-range tail being
U(R) = —C4/R® (Cs = 6.5¢%a] is the van der Waals constant). The adiabatic
approximation also breaks down at R<ay, and the rearrangement processes
occurring at these distances are the following (see ref. [11]):

H + H—Pn* + Ps,

H+H—Pn* +et +e” (2)
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with subsequent annihilation decay of protonium and positronium. The shape of
U(R), typical for p—H and H-H interactions, is presented in fig. 1.

It is very essential that there is no potential barrier in the H-H interaction.
Various speculations on this subject (see ref. [13] and references therein) were
finished after the publication of Kolos et al. [12]. The absence of such a barrier
means that in the case of s-wave scattering nothing prevents the particles from
approaching each other to the short internuclear distances at which the rearrange-
ment processes (2) typically occur. Thus, at ultra-low collision energies, the =
rearrangement probability should be rather large and therefore easily observable.
On the other hand this feature also limits the coexistence lifetime, which makes H—
H mixtures less suited for applications such as collisional cooling.

We emphasize that the absence of a potential barrier in the H-H case does not
mean that such a barrier is absent for the interaction of H with any other collisional
partner. Therefore, the search for a collisional partner with a barrier in the
interaction potential remains very important in relation to atom-antiatom
coexistence and H collisional cooling.

In the subsequent discussion of inelastic processes we shall confine ourselves to
rearrangement collisions only. Spin relaxation in H-H collisions, due to the
magnetic dipole interaction, should proceed at approximately the same rate as in
the case of H]—H1 (ares = 10~1% cm/s). With this number, it can be easily estimated
that the spin relaxation is much slower than rearrangement and does not play an
essential role.

For p-H and H-H interaction potentials the integral [ U(R) d®R is convergent
at large distances R, which allows us to introduce the effective radius of interaction,
R., for s-wave scattering in the k—0 limit, where k is the wave vector for the
relative motion. In the case of a power-law potential U(R) the radius R, is
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Fig. 1. The potential U(R) typical for p—H and A-H.
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determined by the condition that the kinetic energy term in the Schrédinger
equation equals the potential energy term,
h2
2MR?
(M is the reduced mass of the colliding particles) and the main contribution to the
phase shift §y comes from distances R S R.. For p—H and H-H collisions we have

R, = R = (0 M /i)' ~ 65ap, P—H;
= Ry = 2CsM/H?)'/* ~ 102y, H-H. @)

The limit of ultra-low energies in which we are interested (s-wave scattering
dominates), is determined by the condition

kR.«1 (5)
and corresponds to collisional energies

Ex40mK, p—H;
«1.5K, H-H.

Before discussing limit (5) let us give a brief outline of the opposite limit,
kR.>1, where the relative motion of colliding particles can be considered as
classical. This limit was rather well investigated previously, especially at electron-
volt energies, where p—H and also H-H collisions are dominated by the
rearrangement processes (1) and (2) (see, e.g. ref. [11]). The simplest approach is
based on the assumption that rearrangement occurs with probability equal to unity
if the particles approach each other to short internuclear distances (R Sao). The,
the rearrangement cross section coincides with the cross section of capture in the
effective potential Usr(R) = U(R) + E(p/R)* (p is the impact parameter of the
collision), i.e. any collision with energy exceeding the height of the centrifugal
barrier leads to rearrangement. Below energies of approximately 1 eV the capture
cross section o is determined by the long-range tail of the potential U(R)
(polarization tail for p—H and van der Waals tail for H-H). The rate constant of
rearrangement oy, = o = o) for the p—H case becomes

in = 2mhRes/M ~ 10~%cm® /s, kRep>1. (7)
For the case of H-H

in = (3R ./ M)(kR.z/8)'* = 1.5 x 1071°(E/1K)"/® cm?/s,

kR g>1 (8)

(the numerical coefficients given here are slightly different from those in the
original paper [11] where a more detailed shape for the long-range part of U(R) was
taken into account).

= U(R.) (3)
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These results can be improved by introducing the ionization width I'(R), i.e. the
probability of ionization per unit time at fixed internuclear separation (see, e.g.,
refs. [14,15]). This quantity was calculated for the case of p—H (also for p—He) in the
Born—-Oppenheimer approximation by using the diabatic curve representation for
the initial state [14,15]. Such a curve crosses the ionization curves of some
protonium states formed in the rearrangement process. Since there are many such
states, quantum interference effects should be essentially smeared out, and for the
ionization probability per capture collision we obtain

w=1 —exp(— / “[p(R)/v(R)]dR), )

where v(R) is the classical velocity at internuclear distance R. This expression also
assumes that v(R) is independent of the impact parameter p, since in the region of
rearrangement the energy of interaction between particles is much larger than the
centrifugal energy E(p/ R) atp leadmg to capture. With eq. (6) taken into account,
the rearrangement rate constant is

Qljp ~ (073 W. (10)

The value of the classical ionization probability W for p—H, calculated for low
collision energy with the I"(R)-data of Cohen et al. [14] is close to 0.8. The same
number was obtained by Morgan (see ref. [16]). For the H-H case W was not
calculated as data for I'(R) are not available in the literature. Nevertheless, we
expect that in this case W will be rather close to that of p—H.

The classical ionization probability W is a very important quantity for the region
of ultra-low energies satisfying the condition (5). As will be shown below, in this
region W also appears in the relations for the elastic and inelastic cross sections.
The chief idea, allowing us to get a result under condition (5), is based on the fact
that even at extremely low collisional energies E the relative radial motion of
particles is quasiclassical at small enough internuclear distances. This directly
follows from the shape of the potential U(R). For E —0 the WKB criterion (see,
e.g., ref. [17), determining the region of R where the quasiclassical approximation is
valid, gives

R« R, p—H; (11)
R«iR H-H (12)

eH’
At these distances (but outside the rearrangement region) the expression for the
radial wave function is different from the ordinary quasiclassical expression only by
a normalization coefficient. Since R;; and R,y are much larger than the
characteristic distances at which rearrangement occurs, it becomes clear why the
classical ionization probability is present in the expression for the inelastic (o) and
elastic (o¢1) cross sections. However, the dependence of o and oy, on W is different
from that in the case of kR.>»1 as a consequence of the quantum-mechanical
character of the radial motion at R ~ R.. Under the condition (5) with inelastic
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processes (rearrangement) taken into account, the scattering length a in the
expression for the phase shift of s-scattering, §y = —ka, acquires an imaginary part
(see, e.g., ref. [17]),

a=a; — iy, am>0. (13)

The expressions for the rate constants of elastic scattering and rearrangement
become (see, e.g., ref. [17])

0l = oo = 4nhik(a® + a2)/ M, (14)

Cin = Oin = 4nhiap, /M. (15)

Thus, in accordance with the general character of the energy dependence,
ae ~ k ~ /T and oj, = constant, this implies the existence of a limiting temp-
erature below which o, 2 ., the coexistence of H and H in thermal equilibrium is
impossible and collisional cooling of H is not effective. One of our goals is to
determine o, and oy, and clarify whether there are collisional energies for which
Qle] > Qlip«

Let us consider s-wave scattering under the condition (5) and divide the full
range of internuclear distances into four regions, as shown in fig. 1. In region 1
(R< Rz = ap) the rearrangement processes occur. The dashed line represents the
diabatic potential curve for the initial state, and the dash-dotted line corresponds to
the ionization curve of one of the final states. The motion along these curves can be
treated quasiclassically. In region 2 there is no rearrangement, but the radial
motion is also quasiclassical. The characteristic distance Ry; satisfies criterion (11)
or (12), but is essentially larger than R, ~ ay. Region 3 corresponds to motion in
the power-law potential and in region 4 we have free particle motion.

It is essential that region 2 overlaps with region 3. The characteristic distance
Ry3, satisfying condition (11) or (12), can be chosen such that the power-law
dependence of the potential U(R) already holds. This approach works well for p—H
and slightly worse in the H-H case. Naturally, at large enough R region 3 goes over
into region 4. The characteristic distance R34 should be much larger than R, and
the condition (5) allows us to choose it such that kR3s « 1.

The overlap mentioned above enables a matching procedure in which the wave
functions are properly joined. Since even Rj4 satisfies the condition kR3;« 1, all
expressions for the wave functions used in this procedure are solutions of the
Schrédinger equation with k = 0.

In region 2, where the motion is quasiclassical, we first represent the wave
function as a superposition of an incoming and outgoing wave,

Vine ~ €XD (i / R ko(R')dR'), (16)

R
Wout ~ exp(—-i / ko(R)dR — A/2 — 2i43), A>0, (17)
Ry
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where

ko(R) = 1/2M|U(R) /. (18)

Due to rearrangement processes in region 1 the outgoing flux in region 2 is smaller
than the incoming one, which is described by the factor exp(—4/2) in eq. (17). In the
usual representation for the radial wave function we have

R
- m1;’}_)]17\«,111( /R ko(R)) dR’ — iA/4+4's). (19)

The real part of the phase shift & is determined by the behavior of the system at
short internuclear distances and can be obtained with sufficient accuracy only by a
precise numerical calculation (solution of three-body problem for p—H and four-
body problem for H-H).

Before performing the matching procedure for the wave function let us clarify
the physical meaning of the quantity 4 and, with this purpose in mind turn to the
“high-energy case” (kR.>1). In this case outside the rearrangement region the
wave function for {-wave scattering is determined by the ordinary quasiclassical
expression which can be written in the form

|4

_ b(B) . ([R NPT .
Ve=2 (e (R) sm( /R ) kes(R)dR 1A¢(E)/4+¢,(E)) (20)
with
kse(R) = \/2M(E — U(R) ~ 1P(£+1)/2MR2 /12, o1)

As mentioned above, for £—0 and E —0 the rhs of eq. (20) should be different
from the rhs of eq. (19) only by a normalization coefficient and, hence, 4¢(0) = A4.
Relation (20) is valid for £<{max(E), where £pax(E) is the maximum value of the
orbital moment of the collision at which the collision energy exceeds the height of
the centrifugal barrier. For £> £, (E) the particles are reflected by the barrier and
do not approach each other to the internuclear distances corresponding to regions 1
and 2 (i.e. rearrangement does not occur). The quantity Zmax(E) is related to the
capture cross section through

n boxx
0c = ﬁ2(2e+ 1). (22)
=0

It is important that for £</4max(E) and not very high collisional energy (E S1eV)
the parameters A4,(E) are practically independent of £ and E, since under such
conditions the interaction energy in the rearrangement region |U|>|U(Ryy)|
> (E, K2£(¢ + 1)/2MR?). Thus wé have

AE) % Ao(0) = 4, 23)
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where A is the parameter appearing in eq. (19). The diagonal element of the
scattering S-matrix for £ < £max (E) is

Sy(E) = exp (—Ag(E) /2 + 2i6y(E) + 2 /R " lese(R) - K dR’) . (24)

For £>/{n.x we have the same expression, but with 4,(E) =0 and a slightly
different imaginary part in the exponent. Then, using eqs. (22) and (23) and the
general expression for the total rate constant of inelastic scattering (see ref. [17]) for
the rearrangement rate constant we obtain

Lmax
1t
O = EDZ(ZZ +1)(1 = |Se(E)?) = a(E)[1 — exp(=4)), (25)
=0
where o (E) = {o.v) is the capture rate constant. Comparing eqgs. (25) and (10) we
immediately see that 1 —exp(—A4) is nothing else than the classical ionization
probability per capture collision,

W =1 —exp(—A4). (26)

If the representation of the diabatic potential curve is used for the p~H and H-H
interaction in the rearrangement region, then

A= [T r@rier @7)
0

(the main contribution comes from distances in region 1). However, we should
especially emphasize that eq. (26) and our interpretation of the parameter 4 are of
general character and do not depend on the approach for the calculation of 4. We
only used the fact that the parameters 4,(E) are independent of orbital moment
and energy. This general character is important, since various methods (not only
the diabatic curve representation) can be applied for finding 4 and W (cf. refs.
[14,16]).

Let us now turn to our ultra-low energy case (kR. <« 1). At distances close to Ry3
the function w, (19) should change over into the function y; which is the exact
solution of the Schrédinger equation in the power-law potential U(R). On the
other hand, for R close to R34> R, the function y; goes over into the wave function
of freemotionatk = 0,

ve=1-a/R. (28)

Thus, the wave function matching procedure allows us to express the coefficient B
and scattering length a in terms of 4 (or W) and &.

Let us first discuss the case of p—H, corresponding to the long-range tail of the
potential U(R) =~ —1ae?/R*. The solution of the Schrédinger equation for this
potential, i.e. the wave function in region 3, which assumes its asymptotic form (28)
for R» Rep, is
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s = c0s(Rep/R) — (a/Reg) sin(Rep/ R). (29)
For R« R this expression should take the form (19). Representing the argument
of the sin in (19) by  —i4/4 — R;5/R with & = & + f;’z ko(R) dR, we obtain the
real and imaginary part of the scattering length,

sin ® cos
% = Rep sinh?(4/4) + sin’ ¢’ (30)
 _ p sinh(4/4)cosh(4/4) (31)

? sinh®(4/4) + sin’ &
With allowance for these results, eqgs. (14) and (15) lead to the following relations
for the rate constants of elastic scattering and rearrangement:

4nthRep sin® & cos® & + cosh?(4/4) sinh*(4/4) A
= kRc; , 32
ca =31 (kRe) [sinh®(4/4) + sin” & G2)
__ 4nhRep sinh(A4/4) cosh(A/4) (33)

" TTM Snb’(4)4) + s D
The quantum character of the radial motion at R ~ R.; manifests itself in two
ways. First of all, the dependence of the rate constants on the ionization probability
is different from that in the classical case (cf. eq. (10)). Then, egs. (32) and (33)
contain the factors sin @ and cos &. It is interesting to note that for W = 1 (4 — o0)
the rearrangement rate constant oy, = 4nhiRq5/M, i.e. twice as large as in the
classical case.
There is an uncertainty in our final results due to the presence of the unknown
factors sin @ and cos @ in egs. (32) and (33). However, the minimum possible value
of the ratio ayn/c is

ain 1
=] = tanh(4/4). 34
With the value W ~ 0.8 (4 =~ 1.6) mentioned above for the p—H case, we obtain
Clin 0.3
— ) =—. 35
(Otel) min kRel_’ ( )

For this value of W the characteristic values of the scattering parameters are the
following. The elastic cross section o¢ ~ 4nR2; ~ 10*na3, which corresponds to a
rate constant e ~ 3 x 107°(7°/40 mK)l/ %cm’/s. The rate constant for rearrange-
ment o ~ 1077 cm3/s, i.e. rather close to its value in the classical case.

In the case of H-H the long-range potential tail U(R) ~ —Cs/RS. The solution
of the Schrédinger equation for this potential, which reaches its asymptotic form
(28) for R» R, is
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1/2 RA’\ 2ar( R
=I(@) <R°H Yo\ 5g | — (43 Jia\ 532 | |

2R RiuI'(3) 2R
where J is the Bessel function. For distances R satisfying the condition (12) this
function should go over into the quasiclassical expression (19). Representing the
argument of the sin in (19) as n/8—id/4+&—JR%;/R* with =4

+#7! j;fz ko(R)dR — /8, we obtain real and imaginary parts of the scattering
length a. The relations for the rate constants prove to be the following:

(36)

e 4nhR;H )
[s1nh2(A /4) + cos (cos @ + sin &)]* + sinh?(4/4) cosh?(4/4) (37)
_ [2sinh?(4/4) + (cos & + sin &) ’
o = 4nhR: sinh(A4/4) cosh(4/4) (38)

M [2sinh%(4/4) + (cos ® + sin &)?]’

where Rl = 27/2I'(3)/T'(§) R = 0.96R 3. Although these relations are slightly
different from those in the case of p—H, their qualitative interpretation is the same.
For the minimum possible value of the ratio i, /o We obtain the same expression
as in the p—H case, i.e. eq. (34) but with R replacing Rep.

As mentioned above, for H-H the value of W (or A) is not available in the
literature. However, in view of strong similarities it should be rather close to that in
the case of p—H. Thus, (cin/cel)y;, Will be close to that from eq. (35). The
characteristic values of scattering parameters are

o ~ 200na3,
el ~ 1079(T /1K) /% cm? /s,

ain ~ 0.3 x 10710 cm?/s.

The results obtained show that the possibility for collisional cooling of H in HT gas
and the possibility for H-H coexistence are rather limited. These possibilities would
be much more promising if the classical ionization probability W were small, since
the possible minimum value of the ratio (o4,/ce) decreases substantially with
decreasing W and the search for a collisional partner with small W, that would
enable long term coexistence, remains important.

3. Collisional cooling of H

In this section we analyze the consequences of the results obtained above for
experiments of H-H or p—H gaseous mixtures as they conceivably could be
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performed in magnetic traps. It is interesting to establish to what temperatures H
can be cooled by mixing it with H, in particular taking advantage of the evaporative
cooling techniques that have been developed for magnetically trapped hydrogen.

The most straightforward approach, evaporative cooling of the H-H mixture,
seems to be fundamentally impossible. The characteristic value of the cross section
for H-H elastic scattering o (see section 2) is much larger than that for H-H
collisions, o¢ =~ 300. This implies that small quantities of H in H-gas will
equilibrate with the gas on a time scale which is short in comparison to the
characteristic time for evaporative cooling of H. Unfortunately, the rate constant
for inelastic scattering oy, cannot be much smaller than a. It follows from eq. (35),
that under best conditions, i.e. for kR, ~ 1 (T ~1.5 K), we have oy, =~ 0.3c. This
means that H is expected to be lost due to rearrangement collisions with H before
the H temperature can be appreciably changed by evaporative cooling.

The only realistic option for cooling H with H- gas is therefore to first cool H and
then to supply H. To reveal the essence of this approach assume the H gas to have a
sufficiently low temperature that per H-H collision the (average) reduction of the
H kinetic energy is simply a factor 2. Then, the kinetic energy loss rate per H will be

E = —nyvogE/2, (39)

where v is the H-H relative velocity (which simply equals the H velocity as the H
velocity was assumed to be negligible and, hence, v = (E/M)"/?). The particle loss
rateis

n= —Q4inHn, (40)
which gives
t
n = ny exp (— ainnH) , v (41)

where ny is the initial density of H. Then, solving eq. (39) and using eq. (41), we
obtain

E(t)=Eo(l+Z

-2
In(no /n)) . (42)

Here Ey and vy = (Eo/M )l/ 2 are the initial energy and velocity of H, respectively.

Starting with H at 1 K this means that by the time the H density is reduced to 1%
of its starting value as a result of rearrangement losses, the H can be cooled to 40
mK. Further cooling can be achieved only at the expense of even larger losses as the
elastic scattering rate vanishes with decreasing temperatures as /7. Clearly the
lifetime of the H is short in comparison to ordinary hydrogen. In spite of this
somewhat disappointing situation, one should realize that, in real time, a proper
choice of ny should enable the observation of these processes over the course of
hours.

Qlin
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Collisional cooling of H to 40 mK might be more simply arranged with H-p
elastic collisions by mixing H in a very cold p plasma. As for such collisions the
condition kR, =~ 1 corresponds to 40 mK the cooling occurs in the classical
collision regime, where the elastic scattering leading to kinetic energy transport is
determined by the capture in the effective potential Ueg(R) = —1ae?/R*
+E(p/R)2. The scattering rate constant o ~ 10~° cm?/s (see eq. (7)). Within a
cooling model similar to that discussed above for the H-H case, the cooling rate
equation is

E = —nzo.E/2, (43)

where n is the p plasma density, and we obtain an exponential dependence
E(T) = Eyexp(—inpact). (44)

For n; = 10° cm™> one calculates 5000 s to cool the H from 1K to 40 mK.

4. H in the collisionless regime. The problem of one-dimensional adiabatic cooling

Let us now consider antihydrogen atoms in the collisionless regime and address
the option of collisionless adiabatic cooling in which the characteristic energy of the
antiatoms can be reduced by a slow continuous decrease of the potential energy in a
magnetic trap. Such a system seems the most promising for achieving temperatures
below 1 mK, since collisional cooling is not effective and laser cooling only works
for T>1mK.

Decrease of the potential energy in the trap leads to expansion of the gas. For
ordinary adiabatic cooling of a gas of colliding particles in thermal equilibrium, the
characteristic energy per particle E ~ V23, where V is the characteristic volume
of the system. From the experimental point of view it seems practical to increase the
size of the system (decrease the potential energy) only in one dimension. In this case
one should have E ~ L~2/3, where L is the characteristic length of the dimension
which is increasing. It is easy to estimate that such a situation is not very promising
for cooling. For example, if we want to cool H from T ~10 mK (which can be
reached by laser cooling) to T ~ 100 pK (relevant for gravity experiments) we need
to increase L by three orders of magnitude. We emphasize that this conclusion does
not hold for the collisionless regime unless there is sufficient coupling between the
degrees of freedom. However, if the terms in the potential energy, mixing the
motion along one axis of the coordinate system with the motion along the others,
are small, the increasing size of only one dimension should, at least initially, lead to
cooling in this particular dimension. As we shall show below, this situation can
remain unchanged for large (and conceivably even infinite) times. Returning to our
example we point out that in the case of one-dimensional collisionless adiabatic
cooling the characteristic particle energy E ~ L2, and L has to be increased by
only a factor 10 to reach 100 pK, starting at 10 mK.
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We shall discuss the problem of one-dimensional cooling for the case of Ioffe
magnetic trap proposed for neutral particles by Pritchard [18] and used in the
hydrogen experiments [8—10]. The potential energy profile for H | in the Ioffe trap
is described by the relation

V ={lupBo + ;Mawiz’ — ;M (¥ + y)* + ppBoMpul (2 + )
+ MBI (32 + ) + (usBo) P MY w,u22(x2 — Y)Y, (45)

where By is the stationary external magnetic field, My is the H mass. We consider
the case when the characteristic frequency of particle oscillations in the axial
(vertical) direction is much smaller than the radial (horizontal) oscillation
frequency,

wz < wr . (46)
We confine ourselves to consideration of particle energies
Ex NBBO , (47)

which corresponds to ppBy much larger than coordinate-dependent terms in eq.
(45). Then, expanding (45) and retaining quadratic, cubic, and fourth-power terms
in the coordinates, we arrive at the following expression for the trapping potential
(the constant pp By is omitted):

Y = 0 (425 4~ B )+ )

1 1 1 1
422+ (5~ 3p) B+ (- 5) ) 8)
Here
1/2 ‘
= A’Zﬁ’z) , 49)
1/2
I, = < AIZ:.?Z) «l. (50)
The inequality (47) leads to
z«l;, ‘ (51)
x, y<1,. (52)

Due to inequalities (51) and (52) the main coordinate-dependent terms in (48) are
w,z?> and (w? — w?/2)(x® + y?) corresponding to the linear oscillator. Cubic and
fourth-power nonlinear terms, in particular those which lead to mixing of radial
and axial motion, are much smaller.
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The form (48) for the trapping potential allows us to give a qualitative analysis of
the problem of one-dimensional adiabatic cooling on the basis of general
approaches of the theory of nonlinear dynamic systems. Let us consider one
particle in the potential (48). The total Hamiltonian

H=IMyZ+32+)+V (53)

can be reduced to the normal Birkhoff form (see, e.g., ref. [19]), which allows us to
establish adiabatic invariants of the motion by turning to angle-action variables. In
our case it is possible to obtain the Birkhoff forms separately for the axial and
radial motion, with the coupling terms in eq. (48) left out. The corresponding
adiabatic invariants will be close to the linear oscillator ones, which for the axial
motion is

J; = E )
Wy

(54)

where E, is the characteristic energy of the particle motion in the axial direction.

Considering axial motion with the coupling terms taken in account, we can treat
these terms as perturbations proportional to a certain small parameter. Making a
usual transformation (see ref. [19]) in V' (48), for this parameter we obtain

€= & E, F'BBO 12 (55)
Wy ;uB-BO E,

(E, is the characteristic energy of the radial motion). The parameter e is really small
for all energies E;, E, « up By except extremely small axial energies

Eh(E)(«) (56)
Z ~o &1 I.LBBO wr )

which correspond to characteristic values of the z-dependent quadratic term in eq.
(48) smaller than those of the cubic one. These energies require a special
consideration and are not discussed here.

In accordance with the general statement of the theory (see ref. [19]) J; (strictly
speaking, J, corresponding to the axial motion with the pure z-nonlinearity taken
in account) should remain approximately unchanged (AJ;/J; <€) at least on the
time scale

7 ~ (wee) ™l (57)

This statement also holds if w, slowly changes (on the time scale 7>>w;!). Then J,
should approximately remain unchanged on the time scale min(7;, 7). So, the
energy of the axial motion, E., is approximately proportional to the axial frequency
w, and continuously decreases with decreasing w,. In this process the time 7,
increases proportional to w;*/? as follows from substitution of egs. (54) and (55)
into eq. (57).
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Our qualitative conclusion is confirmed by computer calculation with the
trapping potential in the original form (45). Moreover, the calculation shows that
J; does not change appreciably on a time scale by an order of magnitude larger than
7,. The existence of approximate adiabatic invariants at much larger and infinite
times still remains questionable and will be a subject of our future investigations.

However, already for the parameters of the Ioffe trap currently used in hydrogen
experiments [20] (w; ~ 103s7!, w, ~3 x 10*s~1, ugBy ~ 0.1 K) the time scale
~ 107, is of order 1 s for E, = E, = 10 mK and should increase to ~ 1000 s in the
process of adiabatic cooling to E; = 100 uK by slowly decreasing w, to 1% of the
quoted value. This shows a real possibility to observe one-dimensional cooling
experimentally and to use this phenomena for gravity experiments with H.
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