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Abstract

We predict and analyze non-trivial relaxational behavior of magnetically
trapped gases near the Bose condensation temperature T,. Due to strong
compression of the condensate by the inhomogeneous trapping field, par-
ticularly at low densities, the relaxation rate shows a strong, almost jump
wise, increase below T.. As a consequence the maximum fraction of con-
densate particles is limited to a few percent. This phenomenon can be called
a “relaxation explosion”. We discuss its implications for the detectability
of BEC in atomic hydrogen.

Magnetostatic traps offer the possibility to study gases of Bose particles
in the truly dilute limit, and have proved particularly fruitful [1, 2, 3, 4, 5]
in the study of atomic hydrogen (H). In these traps, proposed for H by
Hess [6], the effective elimination of physical boundaries is accomplished
by creating a magnetic field minimum in free space. This minimum
forms a potential well for electron spin-up polarized atoms (H?), called
low-field seckers. The occurrence of Bose-Einstein condensation (BEC)
in such systems introduces qualitatively different behavior from the case
of a homogeneous Bose gas. This is related to the explosive increase
of the dipolar relaxation rate associated with the strong compression of
the condensate in an external potential. A similar phenomenon occurs
in connection with three-body recombination in high density systems [7]
The large condensate density resulting from this compression gives rise
to an increase of the rate of inelastic (dipolar) pair collisions, in which
spins of the colliding particles are flipped, producing high-field seeking
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atoms (H]) which are ejected from the trap. The approach to BEC
is often [6, 8] described in terms of trajectories in density—temperature
space. We shall see that in H, the increase in relaxation rate resulting from
the appearance of the condensate, the “relaxation explosion”, prevents
one from penetrating deep into the BEC region and markedly alters these
trajectories.

For simplicity we consider an isotropic harmonic trapping potential of
the form

m
V(r) = ppBo + Ecozrz, (1)

where r is the distance to the trap center, and w is the oscillation
frequency. The critical BEC temperature is expressed by the relation
T, = 3.31%*n*/3 /m, where n is the density of the gas at the trap center
and m is the mass of the atom. The density profiles in external potentials
were analyzed by Goldman et al. [9], and by Huse and Siggia [10]. The
critical temperature can be expressed in terms of the total number of
particles N, and the parameters of the trapping potential [11]. For the
potential given by Eq. (1) we have

= (N/g3(1))*ho. 2

Here g3(1) = 1.20, where g, is a Bose integral given by g(&) =
"\ n/nl -
et (E"/1°).

Well above T,, the number of relaxation events per unit time is given
by

v, =20 / drn?(r), 3)

where n(r) is the density distribution and « is the rate constant for
dipolar decay. For hydrogen o ~ 10~%5 cm3/s [12, 13]. Below T, we
should replace Eq. (3) by a more general expression [14, 15]:

w=2 [ drg <@ OREHE >, @

where © is the field operator of the atoms and < §T{T PP > is the local
- two-particle correlator.

A detailed calculation [16] shows that, below T, the relaxation rate
can be expressed in terms of its value at Tc'

v(T) = v(Te)(1 + 7. 5( )3/ ° ( )7/ ) sT<Te )

Here, AT = T, — T, and nU represents the mean field interaction
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v,/v(T,)

T/T,

Fig. 1. Number of relaxation events per unit time for a fixed number of atoms,
normalized to the value at T.. The solid line corresponds to n, = 105 cm=3 and
the dashed line to n, = 1013 cm

energy, where n, is the critical density. For H, at T = 100 uK, we have
ne = 5 x 10" cm™ and n,U ~ 0.2 uK. This clearly shows the extreme
weakness of the interaction in this system.

Qualitatively, Eq. (5) can be understood as follows. Above T, we
have, according to Eq. (3) v, ~ aN?/V,, where the classical effective
volume V. is defined trough n(r) = (N/V.)exp(—V(r)/T). Below T, we
have an additional contribution associated with the condensate particles:
vo ~ aN3/V,. Explicit calculation [16] shows

4 u—2n0
3\/(1r)( T,
Clearly, as a result of the weak interaction, we have Vy < V,. Hence,
even if No < N (and accordingly AT < T) the condensate can dominate
the relaxation rate. In Fig. 1 the value of v,(T)/v,(T,) is given for H
atoms for n, = 101*cm=3 (T, = 7uK) and n, = 10%cm=3 (T, = 1504K).

To investigate the effect of the relaxation explosion, we use a simple
model for the kinetics of the cooling proces, in which we assume that
the cooling proceeds sufficiently slowly to consider the system as being
in thermal equilibrium. To obtain the trajectories in N — T space, we
start from the expressions for the internal energy of the trapped gas at

Vo= )iV, ~ 20( )3/5( )3/5V (6)
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temperatures above and below T, (here we neglect n.U):

g4(§)
U=INTEE S T2T. )
U=NT e~y TS ®)

where £ is the fugacity exp(—u/T). From this we obtain relations between
the time derivatives of T, U and N:

(4g4(€)gz(¢) 3) T _ Vel N . )

30 T U g© N
T 1U
T = iT ;T<T. (10)
If we parametrize the cooling process by an energy removal rate
Ry = —U/U, and an accompanying rate Ry of particle removal, we can
write the rate of change of particle number and internal energy as
N v U U,
N= Ry N T RU+U. (11)

Here U, is time rate of change of energy associated with relaxation. As
the relaxing particles have a finite energy, the internal energy decreases
with decreasing particle number. Hence, U, is always negative. From
Eq. (10) one thus finds that when T < T, because the energy does
not explicitly depend on N, relaxation does not lead to heating. In
contrast, from Eq. (9) we see that for T > T, removal of particles
only leads to cooling if the energy of these particles is sufficiently high.
This is the principle of evaporative cooling. In this sense, any loss of
(above-condensate) particles leads to evaporative cooling for T < T..
Note, moreover, that the ratio T/N changes discontinuously at T.. This
behavior has the same origin as the discontinuity in the derivative of
specific heat at the BEC point. A straightforward calculation shows
that U(T) = —(9/4)Tv, for T > T, and U(T) = —(9/4)T0.8v,(T,) for
T<T.

Using the above results we can easily obtain the trajectories in the
N — T plane, if we make the somewhat simplifying assumption that
Ry is proportional to the elastic collision rate R, = avTN /V.. The
resulting trajectories are shown in Fig. 2 for two values of Ry = Ry/R..
Below T, the relaxation explosion manifests itself as an attraction of
the trajectories towards the BEC line. This is particularly striking when
comparing with the corresponding trajectories obtained by assuming the
system to obey Boltzmann statistics at any temperature and density.
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Fig. 2. Cooling trajectories for Ry = 0.1 and 0.05 (solid lines) plotted as N/V.
vs T. The long-dashed curve is the BEC line. The short-dashed curves represent
the trajectories corresponding to a system obeying Boltzmann statistics.
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