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1. Introduction

Over the last decade there has been a wave of interest and important 
progress in spin-polarized hydrogen research. The motivation for studying 
this subject may be traced back to the unique properties of atomic hydro­
gen and deuterium as the only quantum gases. The light mass and the weak 
non-binding b-3 E;1"- interaction between two spin-polarized hydrogen atoms 
lead to a positive internal energy and hence to a gaseous nature down to the 
absolute zero of temperature. The gas is interesting from widely different 
points of view. Apart from the purely scientific interest in its properties 
the cryogenic hydrogen maser is possibly technologically important. One 
may also single out the recombination reaction 2H+X-H2+X as one of 
the fundamental reactions of quantum chemistry or mention exotic collec­
tive phenomena such as nuclear spin waves. Others consider the relevance­
of H-research for the ongoing efforts to create and trap antihydrogen. A 
goal of central importance that probably drew most attention to the field 
has been the search for quantum degeneracy effects such as Bose Einstein 
condensation (BEC) in the bulk gas or the Kosterlitz Thouless transition 
(KTT) in H gas adsorbed on the surface of liquid helium. 

Rather than touching upon many of these different subjects with the aim 
of giving an overview, in the written version of these lectures the subject is 
restricted to various aspects of the interplay of hydrogen with the surface 
of liquid helium. Surface related phenomena are of vital importance to all 
experimental activity in the field and important progress has been reported 
over the last few years. Covering new aspects, the present text is supple­
mentary to comprehensive reviews by Tom Greytak and Daniel Kleppner 
[1] and that of Ike Silvera and myself [2]. Other reviews having a similar
supplementary nature were written by Walter Hardy and collaborators on
zero-field magnetic resonance work [3, 4] and on spin-waves by Jack Freed
[5] and David Lee [6].

The paper is organized as follows. After an introduction covering fun­
damental properties and nomenclature in section (2), the main subject is 
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divided in two parts. The first part, section (3) deals with the static prop­
erties of the adsorbed state of atomic hydrogen on liquid helium. This 
includes both single-atom and gas-phase properties. The other main part, 
section (4) deals with the collisional properties of hydrogen atoms colliding 
with helium surfaces. The paper is concluded with a discussion of experi­
mental results and a look at the future. 

2. Fundamentals

2.1. Atomic constants and hyperfine structure 

Hydrogen and its isotopes (H, D and T) form one-electron atoms with a 
2S 1;2 ground state. The proton and triton have spin i = ½- The deuteron 
has spin i = 1. The corresponding nuclear magnetic moments follow from 
µn = gnµNi. The magnetic moment of the electron is given by µe =

-geµBs. Here we use the notation µB and µN for the Bohr and nuclear
magnetons, respectively, and 9e and 9n for the associated g factors. In terms
of these constants the gyromagnetic ratios are defined by 'Ye = geµB/n and
'Yn = gnµN/n, where 21rn is the Planck constant. The recommended values 
for the free-particle atomic constants of electron, proton and deuteron are 
in respective order [7] 

and, 

'Ye = 1. 760 859 23(53) x 1011 s-1T-1 

r
p 

= 2.675 221 28(81) x 108 s- 1 T-1 

')'d = 4.106 628(2) X 107 s- 1T- 1 , 

9e /2 = µe/ µB = 1.001 159 625 193(10) , 

g
p/2 = µ

p
/µN = 2.792 847386(63), 

gd = µd/ µN = 0.85 7 438 230(24) 

with h = l.054572 66(63)x10-34 J s, µB = 9.274015 4(31) x 10-24 J T- 1 

and µN = 5.050 786 6(17) x 10-27 J T-1
. 

To introduce some nomenclature relevant to this paper the hyperfine 
structure of the ground-state manifold is discussed in some detail for the 
isotope H. The Hamiltonian for this problem involves the Zeeman and the 
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Fig. 1. The hyperfine structure of the 1S manifold of the hydrogen atom. Here "I = cos 0 

and e = sin 0. The other symbols are defined in the text. 

Fermi contact hyperfine interactions: 

(2.1) 

Here a is the hyperfine constant and B the applied magnetic field. Diag­
onalization for s = ½ and i = ½ leads to the well known Breit-Rabi [8] 
energy level diagram shown in fig. 1 with a zero-field hyperfine splitting 

a

vo = h = 1420.405 751 733(1) MHz . 

In zero field / = i + s and m I are good quantum numbers, whereas in 
high fields (B » a/µe -::::: 507 Gauss) this holds for m8 , mi and m,. By 
convention, in spin-polarized hydrogen research the ground state hyperfine 
levels are labeled a, b, c and d in order of increasing energy in small mag­
netic field. The b and d states are pure spin states, the a and c states are 
hyperfine mixed linear cmnbinations of the high field basis states lms , mi): 

where 

Id)= IH), 
le)= cos0IH) + sin0IH), 
lb)= IH), 
la)= sin0IH) - cos0IH), 

tan20 = a/[h('Yc +'Yp
)B]. 

(2 .2 ) 

(2 .3) 
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The simple arrows i and ! refer to the magnetic quantum number of the
electron spins and crossed arrows l and ¾ to that of the proton spins. Thegas phase is characterized by the spin-polarization of the constituent atoms.Unpolarized gas is referred to as H, up or down electron-spin-polarizedgases as Hi and H! respectively. Further one distinguishes the doubly
(both electron and proton spin) polarized gases, consisting predominantly
of b-state (HH) or cl-state (HH) atoms. Sometimes it is convenient to
label the atoms by the direction of the force caused by a magnetic field
gradient. For this purpose the terminology high-field-seekers (for H!) and
low-field-seekers (for Hi) is used. An analogous notation and terminology
is used for deuterium and tritium.
2.2. Interaction potentials 

The interaction between two H-atoms depends on the spin states of theatoms. Thus, the four 1S hyperfine states give rise to 16 potential curves,11 of which are distinct in zero field (for D-D 22 out of 36). However, for
most practical purposes the hyperfine interaction may be neglected and adescription in terms of the X-1 E;; and b-3 E;t potentials is adequate. These
potentials are calculated to high precision by Kolos and Wolniewicz [9-12]. Both singlet and triplet potentials are shown in fig. 2. Spin-polarized
hydrogen atoms interact via the triplet potential. This interaction has a
very weak attractive minimum, only 6.5 K deep. This is at the origin of
the low-temperature stability of the gas phase. The triplet potential doesnot support a many-body bound state even at T = 0 K. To assure thedominance of the triplet potential electron-spin-flips have to be avoidedin experiments. A convenient fitting function for the triplet potential hasbeen given by Silvera [39]: 

Vt(r) = exp(0.096 78 - 1.101 73r - 0.039 45r2 ) 

-Fc(r)(6.5r-6 
+ 124r-8 

+ 3285r-10). 

The cutoff function is defined by

(10.04 )
2 

Fc(r) = exp - -r- - 1 r < l.28rmin,
=1, r > l.28rmin,

(2.4)

(2.5)
(2.6)

where rmin = 4.16 A is the minimum in the Vt(r) curve. The hard core ofthe triplet is defined by the zero crossing r0 = 3.68 A. The exchange energy 
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Fig. 2. The singlet and triplet interatomic potentials as calculated by Kolos and Wol­
niewicz. (b) shows the lifting of electron-spin degeneracy by a magnetic field on a 
magnified vertical scale with respect to (a). 

is defined by J(r) = Vt(r) - V.(r). For internuclear distances in the range 
ao < r < 12ao [39] 

J(r) = exp(-0.288 - 0.275r - 0.176r2 
+ 0.0068r3). (2. 7) •

In eqs. (2.4) and (2.7) atomic units are used (1 hartree = 219474.6 cm- 1, 
ao = 0.529177 A= 1 bohr). 

3. Hydrogen adsorbed on the surface of liquid helium

Liquid helium surfaces play an important role in studies of gaseous atomic 
hydrogen at low temperature. This arises because in experiments the sam­
ple cells are coated with liquid helium films to avoid massive surface ad­
sorption of the H atoms followed by recombination to the molecular state 
H2. Helium films are used for this purpose as they are chemically inert and 
provide the smallest conceivable atom-surface interaction to the H atoms. 
The presence of helium does not seriously affect the vacuum regime in the 
experiments, as at T = 300 mK the density of the saturated vapor of 4He 
is only n = 1 x 1010 cm-3

, which represents a high vacuum. Moreover this 
density falls exponentially with decreasing temperature in accordance to 
the latent heat of vaporization, L4 = 7.16 K for 4He at T = 0 K. Hence,
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the vapor pressure may be reduced to almost any desired level by reducing 
the temperature. It is of course extremely important to understand how 
the presence of the helium film affects experiments with H. First of all one 
would like to know whether H dissolves in liquid helium, or if it is bound 
to the helium surface. 

From an experimental point of view it is well-established that H does 
not dissolve in liquid helium but may become adsorbed onto the gas liquid 
interface [1, 2]. Much effort has been invested from the theoretical side to 
understand these findings in terms of a microscopic theory. For this purpose 
the theory of binary boson mixtures was applied and further developed for 
the hydrogen impurities by Miller [57, 15], Guyer and Miller [16] , Ristig 
et al. [17] and Kurten and Ristig [18]. For our discussion, the quantities 
of interest are the energy required to dissolve an impurity atom in liquid 
4He, t:8 , and the effective mass m* of the impurity. 

We first address t:8 , the effective mass will be discussed in section 3.1 To 
obtain values for t:8 we use the results of Kurten and Ristig who calculated 
the chemical potential µ for replacing one 4 He atom from the liquid by one 
H, D or T atom [18]. Subtracting fromµ the energy L4 to obtain t:8 , one 
finds t:8 = 36, 14 and 6 K, respectively, for the liquid at the experimental 
zero-pressure density p = 0.021 A-3

. These values where used by Reynolds 
et al. [25] to estimate the lifetime of samples of H, D and T due to solution 
into 4He, followed by adsorption on the film substrate with subsequent re­
combination. Reynolds et al. calculate for typical experimental conditions 
and a temperature T = 1 K lifetimes of 9400 year, 120 s and 50 ms for 
H, D and T, respectively. The experimentally observed value for D is 6 s 
at T = 1.1 K [25]. Also unsuccessful attempts by Tjukanov et al. [19] to 
observe T around T = l K may well be explained in terms of loss of atoms 
due to penetration in the helium film. Decay of H samples through this 
mechanism is clearly too slow for experimental observation. 

Although H will adsorb to helium surfaces its adsorption energy €a , de­
fined as the energy required to remove an atom from the surface to infinity, 
is very small. For H on 4He t:a/kB = 1.00(5) K [4]. As we shall discuss 
in section 3.6 , in the low-density, high-temperature limit the adsorption 
isotherm, relating the density of the adsorbed gas na to the bulk density 
ng is given by 

(3.1) 

where A = (21rn? /mkBT) 112 is the thermal de Broglie wavelength of par­
ticles with mass m. The generally accepted picture is that the atoms are 
highly mobile in the adsorbed state and are eventually desorbed after a 
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residency time Ta that ranges from 1 x 10-s s at 400 mK to 3 x 10-4 s at 
100 mK. An expression for the residency time Ta 

(3.2) 

is obtained by balancing the flux of adsorbing atoms 'Ps = s'P against the 
flux of desorbing atoms 'Pd = naAT; 1 for thermal equilibrium conditions. 
Heres is the adsorption probability (sticking coefficient), IP= ¾n

g
vA is the 

total incident flux of atoms with A the surface area and v = (8k8T/rrm)112 

is the average atomic speed. For T 2:; 0.3 K and densities n
g 

,:S 1016 cm-3 

the surface coverage will be very low and consequently loss of sample due to 
molecule formation on the surfaces will be effectively suppressed [2]. The 
limit of high coverage has some very interesting features which recently 
attracted new attention, but a discussion of this regime will be postponed 
to section 3.6 

The properties of liquid helium surfaces are very interesting in their own 
right and have been the subject of numerous experimental and theoretical 
studies. The free surface has been reviewed by Edwards and Saam [37] 
and by Edwards [21]. A recent compilation of articles on bulk and surface 
excitation of the quantum fluids has been made by Wyatt and Lauter [22]. 
For many practical purposes the liquid and its surface may be considered to 
be in their ground state, since for temperatures T < 0.5 K the superfluid 
fraction of the liquid approaches unity. For temperatures of experimen- • 
tal interest, T ,:S 1 K, the thermal wavelength of H atoms is rather large 
(AT112 

'.:::,' 17.5 AK112), much larger than the average nearest neighbor dis­
tance between helium atoms in the liquid (3.5 A). In this sense the surface 
is flat. There is no evidence for any appreciable polarization of the surface 
due to the adsorbed atoms. However, the surface is not static. The inter­
face fluctuates due to the presence of elementary excitations, in particular 
ripplons ( quantized capillary waves). 

3.1. Hydrogen as a quasi-particle in liquid helium 

It is desirable to have a physical picture of the behavior of hydrogen-like 
impurities in liquid helium. This may be obtained in an elementary form 
using the volume coefficient o:, which relates the mass density of a dilute 
mixture to the density of the pure liquid at the same pressure and which is 
a measure for the size of the dressed impurity. This coefficient is calculated 
by Kiirten and Ristig for H and T in liquid 4He [18]. First we estimate 
the effective mass of the impurities. In order to move through the liquid, 
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the atoms have to displace the superfluid. As the atom-liquid interaction 
is repulsive and the superfluid behaves as a ideal irrotational fluid [23], 
an elementary estimate for the effective mass can be made by treating the 
impurity atoms as simple classical spheres [24]. A sphere of mass m moving 
through an irrotational fluid of mass density p experiences no frictional 
force, as is well known from classical hydrodynamics, but its apparent mass 
mc1 is enhanced according to 

- + 1 mc1 - m 2pv, (3.3) 

where v is the volume of the fluid displaced by the sphere. This model may 
be applied to impurities in 4He by writing p = m4n4, where m4 is the mass 
and n4 the number density of 4He. With the relation 

(3.4) 

and identifying mc1 with the effective mass of the impurity, eq. (3.3) may 
be rewritten as 

(3.5) 

This procedure yields m* /m4 = 1.4 for 3He impurities (a-:::: 0.31), which is
not at all bad in view of the experimental value m* /m4 = 1.78 [24]. Using 
a � 12 as calculated by Kiirten and Ristig [18], one finds m* /m4 = 6.75 
for H. Similarly, a c:::: 4.5 yields m* /m4 = 3.5 for T. Unfortunately, the 
deuterium case, for which some experimental information is available [25], 
is not discussed in the literature, but one may argue that the H and T values 
clearly represent an upper and lower limit for this case. The large values 
for the volume coefficient and effective mass of the H-impurity suggest 
the picture that the zero-point motion of the atoms induces a bubble-like 
cavity in the liquid in which the repulsive forces between atoms and liquid 
are balanced by the surface tension. 

Using eq. (3.4) one may estimate the radius of the effective volume for 
an H quasi-particle to be re = 5.2 A. For T one finds re = 3.9 A. 3He-like 
quasi-particles are known to have free-particle-like dispersion curves [26]. 
With the effective masses estimated above one easily shows that around 
T = l K, atoms with sufficient energy to penetrate the liquid may create
quasi-particles with typical velocities up to v = (8k8T /1rm*) 112 

-:::: 30 40 
ms- 1

. The critical velocity Ve for creation of a single roton by the impurity 
i� Ve = .:1/po + p0 /2m* c:::: 80 100 ms- 1 [27]. Here .:1/p0 = 62.5 ms- 1 is the 
Landau critical velocity, .:1/k8 = 8.65 K being the roton gap and Po/n =
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Fig. 3. Dispersion curves for elementary excitations in liquid helium and on the liquid­
vapor interface. Note the deviation from the q3/2 behavior for large q.

1.91 A- 1 the wavevector at the roton minimum. From these estimates one 
may infer that the H quasi-particles should behave much alike 3He in liquid
4He. Dispersion curves of excitations in layers of liquid helium are shown
in fig. 3. We return to these excitations and their relevance for atomic 
hydrogen research in subsequent sections. 

One may not a priori exclude the possibility that a velocity of 30 ms- 1 

is sufficient to create a vortex ring of radius r v = 5.2 A around the H 
quasi-particle when an H atom penetrates the fluid. Vortex ring excitation 
is well-known for ions in liquid 4He. However these ionic quasi-particles are 
much larger, having effective masses exceeding 100m4 [28]. A vortex ring 
may be formed if the speed of the quasi-particle exceeds the translational 
velocity v of a vortex with the same radius as the quasi-particle. For a 
classical vortex ring of radius r v and core radius � the translational velocity 
is given by [28] 

(3.6) 

Here "' = 21rh/m4 is the quantum of vorticity. Substituting figures one 
arrives at v = 47 ms- 1

, which makes vortex excitation unlikely around 
T = l K for H quasi-particles, although it cannot be excluded in view of 
the rough model used here. As D and T quasi-particles are smaller, vortex 
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cl 

Fig. 4. Density profile of the free surface of liquid 4He and 3He according to Stringari
and Treiner. For 4He the density drops from 90% to 10% of the bulk value over a 
distance of 7 A. For 3He this distance is 8.3 A. 

creation should be less probable in these cases. Vortex creation in 4He is 
recently reviewed by McClintock and Bowley [29]. 

3. 2. Properties of single adsorbed atoms

Knowledge of the interaction between hydrogen atoms and the surface of 
liquid helium is of great importance to understand the surface adsorbed 
state of H gas as well as surface related phenomena like the kinetics of 
adsorption or surface catalyzed recombination. Some impression of the 
surface of liquid helium may be obtained from fig. 4 in which we reproduce 
the surface density profiles of 4He and 3He as calculated and reviewed by 
Stringari and Treiner [30]. The density profile is an important but by no 
means the only quantity to characterize the liquid surface. For a proper 
description one has to take into account the structure and dynamics of the 
liquid and correlations in motion between the hydrogen and the helium 
atoms. 

If the atom is at large distance from the surface the problem is relatively 
simple. One may write a surface adsorption potential, simply by adding the 
long range contributions of the interactions between the H atom and the 
helium atoms constituting the liquid. For a pair interaction with Lennard­
Jones r-6 long range behavior this results in a z-3 dependence if z is the
distance above the surface. This approach was taken by Stwalley to make a 
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model with nice scaling properties of the adsorption energy for the hydrogen 
isotopes on liquid 3He and 4He [31]. The repulsive forces are accounted for
in his model simply by putting a hard wall at z = z0, where z0 is chosen 
so as to fit the experimental binding energy of one of the isotopes. The 
difference in binding between H on 3He and H on 4He arises solely from 
the difference in density of the liquids. 

To obtain a more realistic description for the behavior of hydrogen atoms 
in close vicinity of the helium surface one has to rely on microscopic the­
ories taking into account the detailed particularities of the surface region. 
Currently such theories are only available for impurities on the surface of 
liquid 4He. Calculations were made by Mantz and Edwards [32], Guyer and 
Miller [16], and De Simone and Maraviglia [33]. Recently, Krotscheck et 
al. considered hydrogenic impurities on thin liquid 4He films [34]. Here we 
discuss in some detail the extended Feynman-Lekner variational method 
employed by Mantz and Edwards to calculate the binding energy of H, D 
and T on liquid 4He [35, 36, 32]. The method was developed with consider­
able success to describe 3He impurities on the surface of 4He. The method, 
being variational, should provide an upper limit for the energy and thus a 
lower limit for Ea, its accuracy depends sensitively on input-knowledge of 
ground state properties of the 4He surface, such as the density profile, the 
pair correlation function and the kinetic energy density near the surface. 
Also uncertainties and approximations of the interatomic pair potentials 
limit the accuracy of the method. 

The Hamiltonian for a fluid of N 
4He atoms is given by 

(3.7) 

Here v0 is the interatomic pair potential between helium atoms i and j. The 
ground-state wavefunction 1Jt0 satisfies the equation HolJto = EolJto , where 
the ground state energy E0 = -N L4 if one neglects the surface contribution 
to the energy. The wavefunction 1[10 is symmetric under exchange of two 
atoms and may be taken to be real. The single-atom distribution function, 
which reflects the surface density profile of the liquid is defined by 

(3.8) 

If one 4He atom, at position r1, is replaced by an impurity atom of mass 
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m the Hamiltonian for the modified system is 

(3.9) 

where vd(r) = [v(r) - v0(r)] accounts for the difference in pair-potential 
between the impurity-He pair and a He--He pair . 

The Feynman trial wavefunction for liquid plus impurity is 

For our analysis we are in particular interested in the probability density 
p( r1) of the impurity. In terms of the Feynman trial wavefunction, p( r1)
is given by 

(3.10) 

or, re-expressed in terms of a new function </>(ri) = f(ri),Jn(rJ: 

(3.11) 

Notice that </>(r1) may be interpreted as the wavefunction of the im­
purity atom. To solve for </>( ri) Mantz and Edwards used the Feynman 
Lekner procedure, in which the function f(r1) is varied in order to minimize 
the energy (E) = (iJilHliJi) under the constraint (iJiliJi) = 1. This implies 
(biJil(H - E)liJi) = 0 [38], where E is the minimal energy. Taking variations 
only in f(ri), the integral to be satisfied in minimizing the (undetermined) 
energy is 

J dr1 of J dr2-N lJio(H - E)fiJio = 0 . (3.12) 

Using eqs. (3.9) and (3.8) and introducing the He-He two-body density 
distribution 

(3.13) 

eq. (3.12) may be re-expressed in the form of a Schrodinger equation for 
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(3.14) 

with 

and 

Here t(r1)/n(r1) is the kinetic energy per 4He atom in the ground state

(3.15) 

and g(r1• r2) is the He-He pair correlation function for 4He in its ground
state, defined by 

(3.16) 

Mantz and Edwards show explicitly how eq. (3.15) preserves the proper 
asymptotic behavior at long range. 

Equation (3.14) describes the motion of the impurities in the effective 
field of an undisturbed helium background. Although the derivation strictly 
holds for the ground state, the same form should also hold for the excited 
states. Invoking strict translational symmetry the eigenstates may be writ­
ten as 

(3.17) 

where k and R are the components of the wavevector and position of the 
atom parallel to the surface, Z is the distance to the surface reference 
plane and CJ is the normal component of the atomic wavevector. For the 
bound state the notation CJ = B is used. The eigenvalues corresponding to 
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eq. (3.17) are given by 

E =Ea + n2k2 /2m (adsorbed states) 

E = n2 (k2 
+ a2)/2m (continuum states). (3.18) 

In the present context Ea is a lower limit to the binding energy. The wave­
function ¢u(Z) is the solution to the one-dimensional analogue of eq. (3.14): 

(3.19) 

One refers to ¼ff(Z) as the surface adsorption potential. Further, Eu = Ea 

for the bound states and Eu = n2a2 /2m for the continuum states. In fig. 5 
the adsorption potentials are shown for H, D, T, and 3He along with the 
corresponding bound-state wavefunctions. 

The adsorption potentials give rise to a single bound state in all four 
cases. At large distance above the surface the effective potentials of 3He 
and H, D, and T differ only due to the Vd term in the expression for ¼ff. 
Only in the bulk region z ;S Zmin, where Zmin corresponds to the minimum 
in the effective potential for 3He, do kinetic energy contributions lead to 
differences in the effective potentials. This causes the effective potentials for 
H, D, and T to be essentially identical in the region shown in fig. 5. Mantz 
and Edwards used the density profile proposed by Edwards and Fatouros, in 
which the density drops from 90% to 10% of the bulk value over a distance 
of 4.4 A [37]. This surface thickness is considerable smaller than the more 
recent theoretical values presented by Stringari and Treiner [30]. 

Clearly the Feynman Lekner scheme offers an elegant and powerful ap­
proach to the impurity problem on 4He surfaces. It also has its weaknesses. 
From eq. (3.14) it is clear that the backflow effects, leading to the effective 
mass described in the previous section, are neglected. For the adsorbed 
state of H this is of little consequence as the bound state is located well 
above the liquid surface. Its principal weakness, however, is that all opti­
mization is achieved by varying f(r1), which means that correlations in the 
impurity-helium motion are treated as identical to He-He correlations in 
the pure liquid. More sophisticated approaches for the free surface, as car­
ried out by Guyer and Miller, require other approximations that limit the 
overall accuracy [16]. The problems involved are not simple to overcome, 
as today, more than twelve years after publication, the results of Mantz 
and Edwards still stand out to provide best agreement with experiment. 
Monte Carlo schemes used by Krotscheck et al. to describe impurities on 
liquid helium film surfaces are most promising to improve the estimates for 
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Fig. 5. Upper graph: density profile of the free surface of liquid 4He as used by Mantz
and Edwards and probability distributions of H, D, T, and 3He impurities. The lower
graph shows the effective potentials of H on 4He (solid line) and that of 3He on 4He •
( dashed line). 

both binding energies and bound-state wavefunctions [34]. 

3.3. The adsorbate as a dilute gas 

In the preceding sections the properties of individual H atoms were exam­
ined in relation to the surface of liquid helium. For hydrogen gas in ther­
modynamic equilibrium with a helium surface many interesting additional 
aspects appear. There will be a rapid and continual exchange of atoms 
between bulk gas and surface and a steady-state density nw of adsorbed 
atoms is established on the wall. The properties of this adsorbed state are 
largely independent of the detailed adsorption -desorption dynamics. We 
shall discuss some of the highlights of the adsorbed state before we turn in 
the next section to a discussion of the dynamical aspects of the gas-liquid 
interface. There are important advances in the microscopic theory of the 
adsorbed state of spin-polarized hydrogen. Although we have to skip many 
interesting details we shall discuss the prospects for a Kosterlitz-Thouless 



504 J. T.M. Walraven 

(KT) transition in the adsorbed layer and two important consequences of 
this transition: the onset of 2D superfluidity and its effects on the surface 
adsorption isotherms. 

In the adsorbed state, spin-polarized hydrogen may be considered a near­
perfect realization of the weakly interacting two-dimensional (2D) Bose 
gas. For a given bulk density n

g 
the surface density may be varied by 

adjusting the temperature. As described by Silvera and Goldman [39] and 
by Edwards and Mantz [40], the surface density will increase exponentially 
with decreasing temperature until the repulsive interactions between the 
adsorbed atoms limit the density to a maximum value: the saturation 
density nsat · It was pointed out by Edwards and Mantz that well before 
saturation is reached the adsorbed gas will undergo a Kosterlitz-Thouless 
(KT) transition to a superfluid state [41]. The critical temperature for this 
transition is 

(3.20) 

where mnsc = Psc is the superfluid mass density just below T;0 and m 
is the hydrogen mass. The current picture of the 2D Bose gas involves 
the existence of a quasi-condensate, a condensate with fluctuating phase, 
which has strong analogies with the concept of a Bose condensate in 3D. 
The concept of the quasi-condensate is due to Popov [43]. To estimate 
T;0

, nsc has to be evaluated. At the critical temperature the superfluid 
fraction n8/nw changes discontinuously from zero to a finite value: nsc /nw 

[42]. The jump has been estimated to be close to unity [21, 44]. Thus, 
in numerical terms, to enter the KT regime at T;0 

= 100 mK we find 
with eq. (3.20) that the surface density should exceed nw � 1013 cm-2 

(T /nw ;S 7.6 x 10-15 K cm2 ). Unfortunately it is not possible to satisfy
this condition for H gas in thermal equilibrium with a helium surface. 
Three-body dipolar recombination will lead to unmanageable heating of 
the sample. However, by cooling a small section of a liquid helium covered 
sample cell to a temperature much lower than its surroundings it should 
be possible to study the KT regime in steady state [45]. This is one of the 
open challenges for the experimentalists in the field. 

To evaluate how well the weakly interacting Bose picture applies to the 
adsorbed state of hydrogen on liquid helium we introduce two characteris­
tic temperatures, the degeneracy temperature T' and the temperature T*

associated with the elastic interactions between the atoms. The gas is 
weakly interacting if the interactions may be treated perturbatively. In 
practice this is the case for T* « T. From very general considerations 
the onset of quantum degeneracy is to be expected when the distance be-
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tween atoms approximately equals the thermal de Broglie wavelength A. 
Then, a description in terms of atoms represented by wavepackets breaks 
down due to mutual overlap and should be replaced by a description with 
a properly symmetrized many-body wavefunction. For 3D this criterion 
implies degeneracy for T ;S T'

g 
= (21rn2 /mkB)ni13. In a non-degenerate di­

lute gas the actual transition (BEC) occurs at a slightly lower temperature: 
T;0 = 3.31(n2 /mk8)ni13. For 2D the degeneracy temperature is

(3.21) 

Before we turn to the interactions in the adsorbate we briefly mention for 
comparison some properties of the bulk gas. Many more bulk properties 
are summarized in the lectures by Greytak and Kleppner [1]. The 3D 
elastic interaction energy is well-known from textbook treatments of the 
weakly interacting Bose gas [58]. At T = 0 K the energy per particle and 
condensate fraction are given by 

E
g
/N = ½n

g
Vg*[l + O(l

g
)], 

n�/n
g 

= 1 - i(l/1r) 1/2l
g

, 

(3.22) 

(3.23) 

where V
g
* = (41rn2 /m) a8 is the scattering strength and the expansion pa­

rameter is defined by l
g 
= (n

g
an 112

. The low-density regime defined by 
l

g 
« 1 is know as the dilute limit. The expansion (3.22) is only mean­

ingful if the s-wave scattering length as is positive. For as < 0 the gas is 
instable against formation of a many-body bound state (liquid). For two 
H-atoms interacting via the triplet potential Friend and Etters calculated
as = 0.72 A[47]. This corresponds to V

g
* = 4.4 x 10-22 K cm3

. The
chemical potential is given by

(3.24) 

With the definition n
g 
V

g
* = kB r; we find r; = n

g 
( 41r n 2 / mk8) as for the 

interaction temperature. Combining the expressions for r; and T'
g 

one 
finds that the ratio of the characteristic temperatures is closely related to 
the expansion parameter: l

g 
= ¼ v'2(T; /T'

g
)312

. Notice further that even 
for the highest bulk densities of experimental interest, n

g 
� 1020 cm-3

, 

the dilute gas approximation is very well satisfied (T; /T'
g 

� 0.07) and the 
condensate fraction at T = 0 K is expected to be approximately 99%. 

Elastic scattering in 2D is void of the simple low-energy limit that is 
known from 3D effective range theory. In 3D the s-wave scattering length 
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as has a special significance because the cross section has a well-defined low­
energy limit: a(k) = 81!'a;. In 2D it is also possible to formulate a proper 
effective range theory, mapping the problem onto hard discs of diameter 
a (the 2D scattering length). However, the scattering of hard discs has 
a non-trivial low-energy limit in the sense that the 2D total cross section 
(cross-length) diverges for small relative momenta, while the scattering rate 
is vanishing logarithmically. 

A critical discussion of 2D effective range theory was published by Ver­
haar et al. [48], who give the following expression for the phase shift 

2 1 
cotan 770 ( k) = - ('-y + ln ½ ka) + -

2 
r; k2

, 

7l' 7l' 

(3.2 5) 

where a and re are the 2D scattering length and effective range, respec­
tively; 1 = 0.577 215 66 5 ... is the Euler constant. For two H-atoms on the 
surface of 4He interacting via the triplet potential the 2D scattering length 
a� 0.9 A was first established by Kagan et al. [4 9]. The estimates of Ver­
haar et al. [48, 50] for scattering length and effective range are a = 2.3 a0 

and re = 14.3 a0. A more compact but less accurate expression for the 
phase shift is given by Schick [51] in his article on the hard disc Bose 
system: 

sin770 = -½71'/ lnka, ka « l. (3.26) 

Equation (3.26) overestimates the phase shifts in adsorbed hydrogen by 
at most 20% for energies less than 0.5 K [48]. The divergence of the 
2D total cross section for ka « l follows directly with eq. (3.26) and 
a(k) = (4/k) sin2 770 [51]. Multiplying the cross section with the thermal 
velocity to obtain the scattering rate, this quantity is seen to vanish log­
arithmically as mentioned before. In 2D the scattering length is always 
positive and therefore not indicative for the attractive or repulsive charac­
ter of the interactions. 

Schick gives expressions for the ground-state energy per particle and 
the condensate fraction of a many-body system of hard-disc Bosons in the 
dilute limit: 

Ew/N = ½nw v; [1 + O(�)] 

n�/nw = 1 - � + o(e) 

(3.27) 

(3.28) 

where v; = (47r1i2 /m) � is the scattering strength with �- 1 
= - ln(nwa2). 

The validity of eq. (3.27) for the hard disk Bose gas is analyzed in detail 
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by Bruch, who also extends the expansion to include the second order term 
[52]. From eq. (3.27) and eq. (3.22) the interaction energy is seen to be 
positive for all densities, both in the bulk and on the surface. This means 
that spin-polarized hydrogen confined by helium covered surfaces remains 
gaseous down to T = 0 K. The practical limitations on the stability are 
caused by the chemical reactivity of the samples, in particular three-body 
dipolar recombination [2], and not by instabilities leading to a liquid (or 
solid) ground state. Writing µw = (aEw /aN)A = nw v; = kBT;, the 
characteristic temperature associated with the elastic interactions within 
the adsorbate is 

(3.29) 

The ratio of the characteristic temperatures is found to be T;,/i'w = 2�, 
showing for the 2D case the close relation with the expansion parameter. 
For surface densities nw = 1013 cm-3

, the expansion parameter �= 0.15 
and v; = 9 x 10- 15 K cm2 as the reader may verify by substituting the 
'value of the 2D scattering length in the expression for f Thus the weakly 
interacting gas picture is seen to be valid, be it not as good as in 3D. For 
wall densities nw = 1014 cm -3 the second term in the Bruch expression 
for the ground state energy (see ref. [52]) contributes on a 30% level. It 
is typical for the 2D case that variation of the density has little effect on 
the validity of the dilute gas approximation. This originates in the weak 
density dependence of �- One easily verifies that for the large range of -
densities nw = 1012 

- 1014 cm -3
, the relation 

T* ~ T2D ~ _!'T' W � C � 4.Lw (3.30) 

is valid to within an accuracy of 50%. In particular Kagan and collaborators 
used the theory of the weakly interacting 2D Bose gas to systematically 
analyze the collective properties of hydrogen adsorbed on liquid helium 
[49, 44, 53]. Other papers discussing the onset of superfluidity in weakly 
interacting Bose films are by Saam [54] and by Shevchenko [55]. A useful 
paper making the link to the work of Popov [43] was written by Fisher and 
Hohenberg [56]. 

3.4. Variational calculations 

Historically, the first calculations of the energy per particle in the adsorbate 
were done with a variational method by Miller and Nosanow [57]. These 
authors used a Jastrow type variational wavefunction, using a Lennard­
Jones fit to the triplet potential and assuming a strictly 2D motion. The 
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variational approach is accurate to higher densities than the dilute gas 
approach presented in the previous section. Miller and N osanow found a 
linear density dependence for the ground state energy per particle. Using 
their results one may extract v; = 1.9 x 10- 14 

K cm2 for the effective scat­
tering strength. Lantto and Nieminen [58] and also Silvera and Goldman 
[39] used the triplet potential directly in numerical calculations and found
v; � 1.3 X 10- 14 K cm2

. 

Miller and Nosanow point to the absence of logarithmic terms in their 
results, which is at variance with the perturbative treatment of Schick, but 
its significance remains unclear. Bruch [52] also addresses this point for 
finite-range potentials and shows that (in the absence of two-body bound 
states) variational treatments with Jastrow-type trial functions have the 
capacity to produce the nonlinear density dependence of eq. (3.27). He 
arrives at the assertion that eq. (3.27) represents the correct form for the 
ground-state energy in 2D. It is of course not obvious that this conclusion 
remains unchanged if the spatial extend of the bound-state wavefunction 
is taken into account. We briefly return to this point in the next section. 
Here we do not enter into the details of the Jastrow-variational method but 
merely emphasize the level of agreement between the variational results 
and those of eq. (3.27) as another indication for the validity of the weakly 
interacting gas picture. 

3.5. Quasi-two-dimensional or quasi three-dimensional behavior? 

What are the consequences of the limited two-dimensionality of the ad­
sorbed state? In section 3.2 it was shown that the bound-state wavefunc­
tion extends ~ 10 A above the surface and it is not obvious that this may 
be simply discarded. To elucidate some of these aspects, consider a pair of 
H-atoms adsorbed on the surface of liquid helium and mutually interact­
ing through the b-3 E;1°-potential Vi(r), neglecting magnetic interactions.
Except for providing the effective adsorption potential the surface will be
ignored. The motion of the individual atoms is described by eq. (3.17),
which means that the motions parallel and normal to the surface are un­
correlated. For two adsorbed atoms these degrees of freedom are coupled
by the mutual interaction. This makes collisions on the surface, at least in
principle, into a highly anisotropic 3D scattering phenomenon. However,
the normal motion is very fast in comparison to the relative motion in
the plane of the surface, suggesting an approximation in which the prob­
lem may be reduced to a quasi-2D problem by averaging the quantities of
interest over the bound-state wavefunction. The validity of this approxima­
tion was analyzed in detail by van den Eijnde et al. (2½D-approximation)
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who found it to be very good to describe magnetic relaxation problems onthe surface [59]. The relative motion of the pair is analyzed in terms of 2D
partial waves, writing the 3D pair wavefunction on the surface as

(3.31)
m 

Approximating Fm(P, Z1, Z2) by </Jo(Z1)</Jo(Z2)Ym(P) exp(im¢) the vari­ables are separated. Here p = R1 - R2 and </Jo(Z) is the bound-state wave­function, real and normalized to unity and defined by eq. (3.19). Withinthis approximation the Schrodinger equation for the pair (in cylindricalcoordinates) can be reduced to

[ o2 1 (1 4m2 ) 

] op2 
+ 

4 -p2 
- U(p, z) - 2Ua + k2 </Jo(Z1)</Jo(Z2 )Ym(P) = 0,

in which z = Z1 - Z2 , U(r) = (2µ/n?)½,(r), k2 
= (2µ/1i2)E and

Ua = (2µ/1i2)ca. The symbol µ is used here locally to indicate the re­duced mass of the pair. Multiplying the left-hand side with ¢0 (Z1 )¢0 (Z2) and integrating over Z1 and Z2 , one arrives at the 2D radial equation 
(3.32)

where the zero of energy has been shifted by 2Ea and the effective 2D po-·tential is defined by U(p) = f dZ1 f dZ2 ¢5(Z1)¢5(Z2)U(p, z). The latterexpression may be expressed more compactly in terms of the distributionfunction F(z)

U(p) = f U(p, z)F(z) dz,
F(z) = j ¢6 (z + ½z) ¢6 (z - ½z) dZ,

(3.33)
(3.34)

with Z = ½(Z1 + Z2 ). The average probability density in the bound state
F(0) = 0.095 A- 1 was first determined by Edwards and Mantz [40]. Ver­haar and coworkers replaced F(z) by a Gaussian and found a slightly largervalue for F(O) to be the best choice (in comparison to a full 3D analysis)to calculate magnetic relaxation rates [59]. The replacement F(z) = o(z)yields the pure 2D approach referred to in section 3.4 There is also another approach to the problem. As suggested by Edwardsand Mantz one may argue that the localization of the atoms to the surface is
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in fact rather poor and that the adsorbate resembles a thin film with certain 
bulk-like properties rather than a strictly 2D system [40]. Such a quasi-3D 
approach is allowed if the pair correlation at short distance is 3D like, i.e., 
for r0 « l, where r0 = 3.68 A is the hard-core diameter (see section 2.2) of 
the interaction potential and l is a localization length related to the spatial 
extent of the bound-state wavefunction. Etters et al. [60] and Lantto and 
Nieminen [61] show 3D pair correlation functions for several densities. The 
quasi-3D energy per particle takes the form 

(3.35) 

where n!0(Z) = nw¢>6(Z) is the density distribution in the surface layer. 
With eq. (3.34), eq. (3.35) reduces to Ew /N = ½nw Vg

* F(0), so that from a 
comparison with eq. (3.27) we find with eq. (3.34) 

(3.36) 

It is instructive in this context first to have a look how big the average 
effective 3D-densities (n!0(Z)) in the adsorbate actually are. For a surface 
coverage nw = 1013 cm-2 one calculates (n!0(Z)) = nwF(0) � 1020 cm-3 

with the procedure of eq. (3.35). Such an effective density would correspond 
to a bulk transition temperature (BEC) of~ 350 mK. It is consistent with 
the picture of the Kosterlitz and Thouless that due to vortex pair breaking 
the actual transition should occur at a lower temperature ( ~ 100 mK) 
as estimated in section 3.3. Comparing the quantity a5F(0) = 0.07 in 
eq. (3.36) (V; = 4.3 x 10- 15 K cm2) with the expansion parameter � = 

0.15 introduced in section 3.3, one observes that the interaction strength 
for the quasi-3D model is again of the same order of magnitude as found 
for the previously discussed models, although with the approximation the 
logarithmic density dependence is lost. The latter is not the case in the 
analysis of Kagan et al. [49, !4] who used an approach similar to that of 
Edwards and Mantz, but with a simple approximation to the bound-state 
wavefunction that enables analytical results: 

</>o(Z) = (2/l) 112 exp(-Z/l), (3.37) 

where l = (n2 /2mca)112
. For adsorption on 4He this implies l � 5 A. 

Within this approximation and further assuming that r0 « l (which is 
not very well satisfied for H on 4He) they derive for the low-k limit an 
analytic expression for a parameter a* = (l/2) exp(-l/2as), which replaces 
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the 2D scattering length. The corresponding scattering amplitude has the 
form v;(k) = (41rn,2 /m) C, with c- 1 = - ln(k2a*2) and hence logarithmic
character for small k is conserved. Numerically we find a* � 0.15 a0, which 
is much smaller than the 2.3 a0 found by Verhaar et al. [48]. Possibly this is 
associated with limits to the validity of the derivation for the particular case 
of an H adsorbate on 4He. For 3He or 3He/4He mixture surfaces l � 8 A
and the approximation should work better. Aside from these considerations 
the logarithmic dependence on a* assures that the numerical consequences 
for v; remain small. 

In summary, the weakly interacting picture is seen to hold fairly well 
for H adsorbed on liquid helium. The numerical value obtained for the 
scattering strength, v; � 10- 14 K cm2, turns out to be not very sensitive
to the particular model used to describe the adsorbate. In detail, the 
strictly 2D models ( which are most restrictive for the motion of the atoms) 
lead to the highest values for v;. The less restrictive quasi-3D approach 
results in an effective interaction strength which is a factor 2 -3 smaller. 

3. 6. The surface adsorption isotherms and KTT

The surface adsorption isotherm is the relationship between nw and n
g 

for 
a gas in thermal equilibrium with a surface. It is obtained by equating the 
chemical potentials of bulk gas (µ

g
) and the adsorbate (µw). For T = 0 K 

the situation is very simple. Feeding atoms into a volume bounded by 
helium covered walls, all atoms will be confined to the surface until the" 
chemical potential of the adsorbate, µw = nw v; - ca, equals zero and the 
bulk starts to be populated. Thus, the T = 0 K saturation density is 

nsat 
= 

c /V* ~ 1014 cm-2 
w a w ,-.._J , 

as was realized in all early papers on this subject. 

(3.38) 

For T > 0 K the interaction energy per unit density changes. In mean 
field theories, symmetrization causes elementary scattering processes by 
pairs of particles in different states to contribute twice to thermodynamic 
averages where particles in the same state contribute only once. Hence, per 
unit density the interaction energy of the condensate particles is a factor 2 
smaller than that of above-condensate particles. Since in 2D a condensate is 
rigorously absent at finite temperatures, Goldman and Silvera argued that 
the saturation density in any physically realizable system should be a factor 
2 smaller than the value given in eq. (3.38) [62]. This point was carried 
in subsequent reviews [21, 1, 2]. Later, Kagan et al. [44] have pointed 
out that although for T > 0 K the long-range order is destroyed and it is 
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impossible to define a single condensate wavefunction for the entire system, 
still in any local environment it is possible to define a quasi-condensate in 
which a macroscopic number of particles participate and for which the 
symmetrization requirement leads to essentially the same mean field as for 
T = 0 K. The participation of many particles assures that the density 
fluctuations of the quasi-condensate are small. The correlation length is 
given by [44] 

(3.39) 

where Ps = mns is the superfluid mass density. Notice that Re diverges 
for T ---, 0. In the absence of vorticity this quasi-condensate persists up 
to Tw ::::; Tw and (as T;,° 

::::; ¾Tw) in fact involves a major fraction of 
the adsorbate for Tw < T;0. According to the theory of Kosterlitz and 
Thouless above T;0 free thermal vortices appear and Ps rapidly drops to 
zero. As a consequence, the change by a factor ~2 in the interaction energy. 
mentioned above, should be expected at the Kosterlitz Thouless transition 
and not at T = 0 K. This is discussed in the paper of Svistunov et al. [45]. 

At finite temperatures also a thermal contribution has to be added to 
the chemical potentials of bulk and surface. For the ideal 2D and 3D Bose 
gas one has the well-known relations 

(3.40) 

where the fugacity expansions gn(z) = I::;:
1 

z1 /zn with z = exp(µ/kBT), 
define the usual Bose integrals in the absence of spin degeneracy [63]. The 
expressions allow for a Bose condensate of density n0 in the bulk. A con­
densate term does not appear in the expression for nw because for a ho­
mogeneous system in two dimensions a real condensate is rigorously absent 
except at T = 0 [64]. Thus 

µff::::; kBT ln(n
g
A3), for T

g 
> T

g
, 

µf f = 0, for T
g 

� T;0
, 

µff= kBT ln[l - exp(-nw A2)]. 

(3.41) 
(3.42) 
(3.43) 

In the presence of interactions the excitation spectrum fundamentally 
changes. The Bose symmetrization requirement only allows collective ex­
citations in a system with a condensate. In the usual description for the 
weakly interacting Bose gas, due to Bogoliubov, the excitations behave as 
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an ideal gas of quasi-particles which cannot be identified with the individ­
ual gas atoms [65]. This has little consequence for µ

g
. Except for extremely 

low temperatures (T
g 

< r;), the thermal kinetic energy is stored predom­
inantly in free-particle-like excitations and since r; « 'I'

g 
the expressions 

for the 3D ideal Bose gas suffice to predict T?0
. For 2D the situation is 

different. Since in 2D T.:, � T;0 � ¾Tw as we saw in section 3.3, the 
expressions for the ideal 2D Bose gas can only be used for Tw > T_2°. For 
the Kosterlitz Thouless regime the proper excitation spectrum should be 
used to calculate the chemical potential [43]. 

As our interest concerns here in particular the KT transition region, we 
choose to analyze the adsorption well below the critical density for BEC in 
the bulk, thus enabling an analytical expression for the chemical potential 
in 3D 

(3.44) 

µw
= -ca+ nw V;{1+�[f(T/T.:,)+O(ln[�!)]}, forT<T;,0

, (3.45)
µw 

= µff - Ca + 2nw v;. for T > T;,0
. (3.46)

The function f(x) describes the temperature dependence of µw. It is given 
explicitly by Svistunov et al. [45]. Its presence in eq. (3.45) is of little 
consequence as�� 0.15 and f(x) < 1 for T,,;; T

c
2D [45]. Equating µg 

and
µw the surface adsorption isotherms are obtained. In fig. 6 the results for _ 
the T = O. l K and T = 0.3 K isotherms are shown. In the KT transition 
region the drop in interaction energy leads to an increase in surface density 
by a factor ~2. 

Analyzing the steady-state properties of the 2D gas two regimes may 
be distinguished. In a high-temperature regime the steady-state density 
is the result of a balance between particle gain by adsorption and particle 
loss by desorption. At low temperatures the desorption rates become very 
small and particle loss is dominated by recombination. Under the latter 
conditions the adsorption isotherms defined by eq. (3.46) are no longer 
valid. 

4. Collisions of H-atoms with the surface of liquid helium

In general, when H-atoms collide with the surface of liquid helium a variety 
of processes may take place. The atoms may simply scatter off elastically, 
leaving the surface unperturbed. or excite the surface creating ripplons or 
phonons, while adsorbing or scattering off non-specularly. In the coming 
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Fig. 6. Adsorption isotherms of H on 4He for two different temperatures (fat solid
curves). The intersection of the isotherms with the thin solid curve defines the KT 
transition points. The dashed lines are the isotherms (with exchange contribution) given 
by Goldman and Silvera. Note the cross-over to the dash-dotted curves (no exchange) 
at the KT-transition. 

sections the most relevant scattering phenomena will be discussed within 

the framework developed up to this point, putting emphasis on the low­

energy limit. Rather than switching formalism all scattering channels will 

be discussed within one and the same perturbative approach. 

From a general point of view the choice of atom and surface is rather 

specialized. Nevertheless, many of the features to be described are typical 

for any surface collision at vanishing incident energy. In this sense the H 

He system may be regarded as a model system. In view of its small mass 
the quantum limit is reached with hydrogen at relatively high energies, 

while the exceptionally weak atom surface interaction enables an accurate 

description in terms of low-order perturbation theory, except in the vicinity 

of resonances in the adsorption potential. 

4.1. The elementary excitations of the 4 He surface: ripplons 

Aiming at a description of inelastic scattering phenomena of H-atoms with 

liquid helium surfaces we first briefly review the intrinsic excitations of 

those surfaces. As little is known of the excitations on 3He the present 

discussion is restricted to liquid 4He surfaces. Further, we shall not discuss 
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here the microscopic theory of these excitations, but rather present a phe­
nomenological theory in terms of collective excitations in which the liquid 
is treated as an incompressible non-viscous fluid and the surface profile is 
a step function in the density. This approach is due to Atkins [66]. For 
a discussion of many more aspects of helium surfaces the review paper by 
Edwards and Saam is recommended [37]. 

For our purpose we consider a layer of pure liquid 4He of thickness d 
covering a horizontal planar substrate. For d being small ( d ;S 200 A) one 
deals with properties of a helium film. In the limit d -+ oo the layer 
behaves as bulk liquid and the properties of the free surface should be 
eminent. The fluid layer will support wave-like hydrodynamic modes, which 
will experience very little damping as 4He is a superfluid. The elementary 
excitations of the helium surface are known as ripplons, quantized capillary 
waves [66]. They are related to fluctuations in the thickness of the liquid 
layer 

Qmax 

h(r) = A-1/2 L hq eiq•r'
q 

(4.1) 

where r is a position vector in the plane of the undisturbed surface and 

h _ (hqtanh(qd)
)1;2( + 

)q 
- 2 Tq + T-q 

PoWq 
( 4.2) 

is the ripplon amplitude operator. Notice that the commutator [h
q

, h
q
'] = 0 

for all q and q'. The summation in eq. (4.1) is restricted to wavenumbers 
q :S qmax, as for wavelengths smaller than the interatomic spacing of the 
liquid the continuum picture breaks down (Qmax � 1 A-1 ). Further. rt and
r q are creation and annihilation operators for ripplons with wavevector q
in the plane of the surface, p0 = m4n4 is the ground-state mass-density of 
4He, as in section 3.1. and w

q 
is related to q by the dispersion relation 

(4.3) 

shown in fig. 3. The ripplon dispersion is composed of two contributions. 
The first term in eq. ( 4.3) results from a gravity-like restoring force, char­
acterized by an acceleration 

(4.4) 

where o:3 is the van der Waals parameter of the interaction experienced 
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by a 4He atom at a distance z above the substrate: U(z) = -a.3/z3. 

For a helium film of thickness d = 100 A on a quartz substrate (a.3 =

1.62 x 10-5o kg m5 s-2) this van der Waals contribution is 108 times larger
than the real gravity contribution, so that gravity effects may be neglected 
except for liquid layers of thickness d 2: 1 µm. The second term in the 
dispersion relation is associated with surface tension (--y) as a restoring 
force. For 4He the surface tension is given by "f(T) = 'Yo - "(1 T713 

- "(2T5
, 

where 'Yo = 3.54 x 10-4 J m- 2 is the value at T = 0 K 'Yi = 6.5 x 10-6 J
m-2 K- 7/3 and 'Y2 = 6.3 x 10 -7 J m-2 K-5 [67]. From eq. (4.3) one notices
that for long-wavelength ripplons the gravity-like term is dominant. The 
cross-over wavelength 

( 4.5) 

depends quadratically on the film thickness. For d = 100 A one calculates 
Ao '.::c:' 3600 A. The hyperbolic tangent in eqs. (4.2) and (4.3) accounts for 
effects associated with the layer thickness. For small ripplon wavelength 
(A « d) it does not influence the dispersion of the waves. For wavelengths 
much larger than the film thickness the wave senses the substrate and the 
dispersion is modified by a factor qd.

It is a useful exercise to estimate which ripplons may be thermally ex­
cited. Statistically the ripplons behave as bosons, with the ripplon occu­
pation being given by 

1 
n --------

q - exp(hwq/kBT) - 1
(4.6) 

Thus, for frequency much higher than that of the thermal ripplon, defined 
by hwq = kBT, the thermal occupation vanishes. For low-frequency exci­
tations hwq « kBT the quasi-classical expression applies: 

(4.7) 

For thick films under conditions where the surface tension term is dominant, 
the wavelength of the thermal ripplon is given by 

(4.8) 

A thick film is defined in this context by d » Ar. At 200 mK this cor-
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responds to Ay = 95 A. This means that dynamic surface roughness on a 
smaller scale solely arises from the presence of zero-point fluctuations. 

We next estimate the typical mean square fluctuation (h2 ) of the surface 
due to ripplons using the method presented by Cole [68]. The mean square 
displacement is defined by 

(4.9) 

where ( ( ) ) denotes the quantum-statistical average. Since we are looking 
for an expectation value, which is a diagonal property, eq. ( 4.9) may be 
rewritten with the aid of eq. ( 4.2) as 

(4.10) 

where n
q 

= rtr -q is the number operator. This expression contains two 
contributions. The first contribution is due to the zero-point motion. With 
the usual continuum transition Lq --t A/(2n) 2 J dq it becomes: 

(4.11) 

provided Amax « d. Similarly one finds for the second contribution which 
arises from the thermal excitations: 

(4.12) 

with w5 -=::- 9etrQo tanh(qd). The parameter Jo = 1 for bulk helium and 
Jo = 3/4 for films with Ar :» d. The rms fluctuations are plotted in 
fig. 7 both for the free surface of liquid helium and for a helium film of 
·100 Aon a quartz substrate. As an aside it is interesting to note that the
low-frequency cutoff arises from the presence of the gravity contribution to
the dispersion. Without this term the surface fluctuations diverge at any
finite temperature. The strong enhancement of 9eff in the case of films is
seen to strongly suppress the thermal fluctuations.
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Fig. 7. The rms displacement of the surface of 4He under its saturated vapor pressure

as a function of temperature. Note the strong suppression of the thermal fluctuations 

in the case of films. 

4.2. Atom-ripplon coupling 

To analyze explicitly how the presence of ripplons affects the H-He atom 
surface interaction consider an H-atom at position (R, Z) above a bulk 
quantity of liquid 4He as illustrated in fig. 8. The 4He atomic coordinates 
are denoted by ( r, z) and h( r) represents the z-position of the interface at 
site r. An ansatz for the interaction between atom and liquid is obtained 
by integrating the H He interatomic potential, V(IR - rl 2 + IZ - zl 2 ), 
over the volume of the liquid, while assuming the potentials to be pairwise 

HIR ZI 
I 

' 
�e 

lr,zJ

Fig. 8. The coordinate system in which the atom- surface interaction is analyzed. 
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additive:

(4.13)

Here n(r, z) is the liquid density at site (r, z). For an incompressible liquid
with a sharp interface at z = h(r), eq. (4.13) may be rewritten as

U(R, Z) = nHe j dr W(IR- rl 2 + IZ - h(r)l 2), (4.14)

with V = -aw/az. In view of the discussion of section 3.2 this ansatz
is clearly very crude, but it suffices for our present purpose. Expanding
U(R, Z) for small values of h(r) leads with the normal mode decomposition
eq. (4.1) to

U(R, Z) = ut(Z) - A- 1/2 L h
q 

eiq 
• R a� U�(Z) + · · · (4.15)

where

(4.16).

with

(4.17)

To arrive at eq. (4.15) only those terms should be retained in the expan­
sion that may contribute to zero- or one-ripplon matrix elements of ( un­
perturbed) harmonic ripplons. The first term in the expansion eq. ( 4.15)
relates to the static (q = 0) adsorption potential, the second term gives the
dynamical coupling to single ripplons. Thermally averaging u;(z) yields:

((u;(z)}) =nHe J dr eiq •r

x l
o= dzV(r2 

+ (Z - z) 2)½erfc[z/(2(h2 )) 1 12], ( 4.18)
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where (h2 ) is the rms surface fluctuation due to the ripplons, derived in 
section 4.1 For q = 0, eq. (4.18) provides an improved approximation to 
the adsorption potential, accounting for the presence of ripplons. The 
complementary error function has the same origin as the Debye-Waller 
factor in neutron scattering. It replaces the sharp interface at z = 0 in 
eq. ( 4.17) and may be interpreted as the ripplon contribution to the density 
profile. Using (h2 ) = 1.6 A, as follows from eq. (4.11), one finds that for 
T = 0 K the density drops from 90% to 10% of the bulk density over a 
distance of 3.6 A. Comparing this result with the 4.4 A used by Mantz and 
Edwards (ME) shows that the ripplon contribution to the density profile 
is important. The dependence of eq. (4.18) on (h2 ) further implies with 
eq. (4.12) a temperature dependent adsorption energy. This effect should 
be small (in particular for helium films) as the width of the density profile 
is substantially smaller than the extent of the bound-state wavefunction. 

To arrive at a better approximation to the adsorption potential one has 
to improve upon the above procedure by introducing pair correlations and 
include the phonon contribution to the surface profile. Authors interested 
in the atom surface scattering problem have bootstrapped themselves to 
this point by using a step-function profile and constructing an effective H 
He pair potential that reproduces the ME-adsorption potential on the level 
of eq. ( 4.17) (with q = 0), while leaving out all terms in the expansion of 
U(R, Z) that lead to the Debye-Waller factor. Zimmermann and Berlinsky 
(ZB) used a Morse potential to approximate the ME-results. This form for 
the potential allows an accurate fit to the well region of the ME-potential 
and has the advantage of allowing analytic solution of the wavefunctions. 
Kagan and Shlyapnikov (KS) used the same approach, but accounted for 
the proper long-range behavior by adding a -o:3 /Z3 van der Waals attrac­
tive tail. Relativistic retardation effects in the H-He interaction are very 
small and therefore neglected in all papers on the subject. 

Currently. preference is given to a slightly different approach. It has been 
established that atom surface scattering, if at all sensitive to the adsorp­
tion potential, is sensitive to the value of the bound-state energy rather 
than to the detailed shape of the potential [69]. Therefore, the flexibility 
of the Morse form is better used to match the experimental adsorption 
energy of 1 K rather than to fit the ME-potential. For helium films the 
substrate may affect the van der Waals attractive tail. This effect can be 
included by adding to the potential a term ~ ( Z + d)-3 that accounts for 
the replacement of bulk helium by a substrate, leaving a film of the desired 
thickness d. At this level retardation effects due to the substrate have to 
be included. A recent choice for an effective surface adsorption potential 
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including all these effects is given by Hijmans et al. [70]: 

(4.19) 

where o:3 = 219.7 K A3 is the van der Waals coefficient for H on bulk 4He 
and 

( 4.20) 

is the Morse potential, with Umin = 5.14 K, /3 = 0.52 A- 1 and Z0 
= 4.2 A, 

while f(Z) and g(Z) are cross-over functions defined by

J(Z) = ½ tanh[/3(Z - Zc)] + ½, 

g(Z) = [ do 
- (do+ d + Z) e-2(z+d)/do] (Z + d)-1.

(4.21) 

( 4.22) 

Here Zc = 13 A is the Morse -van der Waals cross-over point and do the
retardation length, which depends on the substrate. Cs is a numerical 
constant such that Cs + 1 represents the ratio of the van der Waals attraction 
of the H-atom due to the substrate and a bulk helium underlayer. 

4.3. Surface adsorption: sticking coefficient 

The first and most important scattering process to describe is surface ad­
sorption or sticking. This process includes all scattering channels in which 
atoms end up in a surface-bound state. The term sticking is somewhat 
misleading as the atoms are in fact highly mobile in the adsorbed state, see 
eq. (3.18), and desorb after a short residency time. 

Some characteristic features of the sticking channel follow directly from 
the conservation laws. In the low-energy limit, i.e., for incident energies 
E « Ea , the energy liberated in the adsorption, Ea , has to be shared be­
tween the adsorbed atom and an excitation in such a way that atom and 
excitation have equal and opposite momentum, ±hqa, along the surface. 
For ripplons on bulk helium this implies h2 q;,/2m + hw

q
a = Ea and a cor­

responding wavelength Aa = 21r / qa ,::;i 48 A. For phonons the situation is 
slightly different. Where in the ripplon case the energy is more or less 
equally shared between ripplon and adsorbed atom, in phonon mediated 
adsorption more than 90% of Ea is transferred to the excitation, qa ,::;i Ea/hu, 
or Aa ,::;i 95 A. Both the ripplon and phonon wavelengths mentioned above 
are substantially smaller than the wavelength of the corresponding ther­
mal excitations: 95 A for ripplons and 571 A for phonons at T = 200 mK. 
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Hence, adsorption processes stimulated by thermal excitations may be ruled 
out for typical experimental conditions (T � 0.5 K). 
4.3.1. Ripplon mediated adsorption The sticking probability of H on 4He was first calculated by Zimmermannand Berlinsky (ZB) [71] and by Kagan and Shlyapnikov (KS) [72, 74] withinfirst-order time dependent perturbation theory. Writing the wavefunctionas a simple product in the notation of eq. (3.17), the transition rate tosurface bound states under creation or annihilation of a single ripplon is 

I's(€) = 
27r � 

L 
nqtanh(qd) l(BI 3Uq(Z) la)l

2 

n A 2p0wq 
az 

q 

x [(1 + nq)b(E' + 'hwq - E) + nqb(E' - 'hwq - E)] . 
( 4.23) 

Here E and E' are the initial and final state energies of the adsorbingH-atom, respectively. For atoms incident at an angle 0 with respect tothe surface normal c = E cos2 0 = n2 o-2 /2m is the energy associated withthe normal motion at incidence; 'hwq 
1s the energy of the ripplon excitedor annihilated. The bound state is normalized to unity. By normalizingthe initial-state wavefunction to unit incident flux eq. ( 4.23) represents thesticking probability. For large Z the asymptotic form of the initial state isgiven by 

cp(Z) = 2(m/na) 112 sin[aZ + b(a)] (4.24) 
where b is a phase shift. The potential Uq(Z) is given by eq. ( 4.17), where the effective pair potential V is chosen such that U0 (Z) reproduces the desired static adsorption potential. In the low-energy limit and for films of thickness d » >.a only the termswith q � qa will contribute to the sum in eq. (4.23). With eq. (4.6) the thermal contributions are calculated to be negligibly small: nq

a � 0.06 for a wall temperature Tw = 200 mK. With these approximations eq. (4.23) reduces to 
( 4.25) 

The only € energy dependence in this equation appears through the a-­dependence of the initial-state wavefunction. To illustrate this point in
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Fig. 9. Surface adsorption potential of H on 4He and corresponding eigenstates. Apart 

from the bound-state wavefunction two continuum states are shown with normal energies 

10 and 200 mK. 

fig. 9 two continuum wavefunctions with different normal energies are 
shown. The wall temperature does not appear as the surface is effectivety 
in its ground state. It was shown by ZB and KS that for vanishingly low 
incident energies, the matrix element scales as E112 cos 0 so that for a ther­
mal ensemble of atoms at temperature T

g
, s ~ Ti12. This limit is known as

the quantum reflection regime. Goldman [75] numerically investigated the 
influence of the detailed potential shape. He pointed out that depending 
on the choice of the van der Waals coefficient o:3, the value of s may vary 
by orders of magnitude and is always larger than the result of ZB, who 
neglected the long-range tail altogether. He found that in extreme cases 
the low-energy limit may only be reached for temperature below 1 µK. The 
importance of the long-range behavior of surface potentials for the quan­
tum reflection regime was also stressed by Brenig and collaborators in a 
more general context [76]. Goldman also varied the repulsive core of the 
potential, while fixing Ea , but this turned out to have little effect on the 
limiting behavior of s. 

The recent results of Hijmans et al. for the low-energy limit of sticking 
are shown in fig. 10. These results were obtained with eq. (4.25). The ma­
trix element was numerically evaluated using the HWS-potential eq. ( 4.19). 
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The dotted curve corresponds to the Morse potential and is described by 

( E) 1/2 

s(E, 0) = So Ea 
cos 0, ( 4.26) 

with So � 0.11. An analytic expression in terms of the Morse potential 
parameters is given by ZB. The solid curves in fig. 10 correspond to a 
helium film of 50 A thickness and for various retarded substrate potentials. 
The value of s increases with Cs . The curve with Cs = 0 corresponds to 
bulk helium. The dashed curves correspond to the same series of substrates, 
but leaving out the retardation. 

4.3.2. Phonon-mediated adsorption 

From a practical point of view, the phonon contribution to the sticking 
process is unimportant. This was demonstrated by KS in their first pa­
per on the subject [72]. Nevertheless it seems appropriate in the present 
context to spend a few words on this process. Surely there is no a priori 
reason to disregard the phonons. Leaving out thermally stimulated pro­
cesses from the onset and choosing the normalization convention of the 
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previous section, the sticking probability is written as 

( 4.27) 

Only phonons with q � qa will contribute in the low-energy limit. Using 
the phonon dispersion Wq = uq, where u � 239 m/s is the speed of sound in 
4He, and after integrating-out the delta-function one finds for bulk helium 

s(E, 0) = � q� 2 [(B[Uq (Z)[a)[2 
. 

21rn pou • (4.28) 

In complete analogy with the ripplon mediated case all dependence on 
E: enters through the a-dependence of the initial-state wavefunction. This 
results in the same c-dependence of ripplon and phonon channels in the low­
energy limit. For a Morse potential the matrix element is liUmin(E /ca)112 x 
cos 0 so that [72] 

( E) 1 ;2 

s(E, 0) = sgh 

Ea 

cos 0, ( 4.29) 

with sgh 
= (Um in/21r)(q�/ p0u2 ) � 4 x 10-4

_ Comparing with eq. (4.26) 
one finds that the atoms couple much stronger to the ripplons than to the 
phonons, meaning that the latter coupling may be neglected. 

4-3.3. Adsorption near the saturation density
At surface densities within a factor 2 from the saturation density the physics
of the adsorption process changes markedly as collective effects start to
be important. This case was studied by Kagan et al. [73]. The effective
adsorption energy is reduced by the interatomic interactions in the adsor­
bate. The leading adsorption mechanism is stimulated capture into the
quasi-condensate of the adsorbed gas. Two temperature regimes may be
distinguished. For T > 0.1 K the process turns out to be assisted by bulk
phonons. For T < 0.1 K the process can be ripplon assisted, but only if
(re)desorption of particles from the quasi-condensate may be avoided.

4.4. Thermal averaging, detailed balance and thermal desorption 

Before continuing the discussion of individual scattering channels we have 
a look at some simple expressions for thermal averages of atomic flux re-

___

___
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lated probabilities, such as the sticking probability. The discussion will be 
restricted to probabilities W(E', 0) that may be expressed in the form 

( 4.30) 

where E is the kinetic energy of atoms incident at angle 0 with respect to 
the surface normal. The functional form of eq. ( 4.30) is chosen because it is 
typical for the limiting cases of atom surface scattering that are discussed 
in these lectures. 

For a Boltzmann gas of density n
g 

and temperature T the distribution 
of the flux incident on a surface area A may be expressed as lf>in(E, 0; T) =
<J>P8

(E, 0; T), where <J, = ¼n
g
vA is the total flux and

( 4.31) 

is the normalized thermal flux distribution. As the transition probabilities 
are defined as transition rates per unit incident flux, thermal averaging is 
properly done with the distribution eq. (4.31). For eq. (4.30) this yields 

( 4.32) 

where I'(z) is the gamma function. By leaving out the 0-integration in the 
averaging, the gas average eq. ( 4.32) may be related to a beam average for 
a thermal beam incident at angle 0: 

W(T, 0) = ½(m + 2)W(T) cosm 0. ( 4.33) 

Equations ( 4.30), ( 4.32) and ( 4.33) may serve to conveniently interrelate 
various expressions for transition probabilities presented in this text and 
in the literature. At the same time it should be emphasized that special 
care is required in cases where grazing incidence is important and eq. (4.30) 
tends to break down. 

To derive the flux distribution Paut (E, 0; T) for the atoms desorbing from 
the surface detailed balance should be enforced. At equilibrium: 

(4.34) 

Here Paut(E, 0; T) is normalized to the total incident flux. Notice that 
eq. ( 4.34) has this particularly simple form because the atoms fully ther­
malize in the adsorbed state. Combining eqs. (4.26), (4.32) and (4.34) one 
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finds for the desorption channel at low temperature

q,out(E', 0'; T) = (q,/kBT)(E /1rkBT)312 exp(-E /kBT) cos2 0 sin 0 .  
(4.35)

In view of the full thermalization on the surface, this expression should
remain valid also for a non-thermal incident flux.
4.s. Direct inelastic scattering

Apart from scattering into a surface bound state, H-atoms may also ex­
change energy with ripplons in direct scattering processes, i.e., in collisions
without adsorption. Direct processes differ importantly from sticking as in
the absence of adsorption the energetics exclusively involve thermal ener­
gies. Hence ripplons of very low q-values may be excited and the quasi­
classical approximation, eq. ( 4. 7), holds. Interestingly enough for q --. 0
direct processes are independent of the adsorption potential. This was
pointed out by Tiesinga et al. [77]. All put together, for H-atoms with de
Broglie wavelength much shorter than the wavelengths of thermal ripplons,
the picture emerges of classical particles colliding with the fluctuating sur­
face of a classical incompressible liquid. This is exactly the approximation
made by Castaing and Papoular to calculate the contribution of direct scat­
tering to the Kapitza resistance of the H He interface [78]. The argument 
also provides plausibility to the remarkably good agreement between the"
results with this classical approach and those of subsequent fully quantum
mechanical calculations, such as those by Statt or Goldman [79, 75]. 

To further outline the essential features of direct scattering we remain
within the perturbative approach of the previous sections, writing the prob­
ability for direct scattering under emission or absorption of a ripplon as 

Wd(c) = � j da' j dq 
q

2 

�anh(qd) IM(a', a; q)l 2 

1r powq 

x [(nq + 1)8(E' + nwq - E) + nq8(E' - nwq - E)] .
(4.36)

The initial-state wavefunction is normalized to unit incident flux as in
eq. (4.24) and the final state q/(Z) is normalized to unity in a box of
length L. Its asymptotic form for large Z is

( 4.37)
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The matrix element is given by

(4.38)
where the limit should be taken while maintaining zo < L. The dependenceof eq. (4.36) on c and on the wall temperature appears through nq �
ksTw/fUJJq, while the energy of the scattering atom enters through the Cl­
dependence of the initial and final states. At this point we distinguish two
interesting limiting regimes: the quasi-elastic regime and the low-energy
limit.
4.5.1. Quasi-elastic scattering (E » ksTw) For fast atoms incident on a cold helium surface, direct inelastic scattering
is quasi-elastic, i.e., the momentum transfer and hence the scattering angle
0' are small, 0' � tan 0' = q/Cl « l, while Cl1 � Cl. To illustrate this point
note that a 0.2 K atom at normal incidence will be scattered over Br � 22 °
by a 0.2 K thermal ripplon and over 0.6 ° by the cross-over ripplon. 

Ripplon emission and absorption are equally important. Hijmans and
Shlyapnikov [80] show explicitly by partial integration of eq. (4.38) thatfor q -+ 0 the matrix element is independent of the potential and may be
expressed in analytical form as

( 8 ) 1/2 

�� M(Cl, Cl; q) = -

h:;;, C. (4.39)
After removal of the delta function in eq. ( 4.36) by integration over Cl1 andtransforming the q-integration into a 0' -integration we have

(4.40)
where w0 = (2mk8

2 /1r,h2 ) = 0.1 K- 2 , with Bb the average scatteringangle induced by a ripplon of cross-over wavelength >.0 . For Tg = 0.2 K
and a helium film of 100 A thickness 0b � 0.6 °. For a thermal beam at
normal incidence characterized by a temperature Tg , the probability forquasi-elastic scattering within a scattering angle 0:r,ax is 

(01 ) 4m ( ks ) 
2 

[ ( 
B:r,ax) 

2
] Wa max � 1r, h TwTg ln 1+ 0b ( 4.41)

In view of the weak dependence on the scattering angle this expression
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Fig. 11. Differential scattering probability at normal incidence (dW(0')/d0') as a func­

tion of scattering angle 0'. Note the dominance of small scattering angles for direct 

processes. 

remains approximately correct for Tg � Tw. To illustrate the concept of 
quasi-elastic scattering the derivative of eq. ( 4.41) with respect to 0:r,ax is 
shown in fig. 11. 

4.5.2. Low-energy scattering limit (E « kBTw) 
Another interesting case of direct inelastic scattering is the case where 
very cold atoms scatter from a relatively warm, i.e., thermally activated 
helium surface. Due to momentum conservation in this case the atoms 
will scatter off with the ripplon momentum q parallel to the surface. As 
the atom also has to carry off the ripplon energy nwq , the atoms leave the 
surface at some angle Bd with the surface normal, which is independent of 
the incident energy. One immediately shows, using the dispersion relation, 
that for helium films at temperatures such that >-.r « .\0 , this departure 
angle is also independent of surface temperature: 

[2m ('d) 1/2 l 
tan Bd = 

h Po 
- 1 . ( 4.42) 

For a film thickness d � 100 A one calculates Bd = 45 °. The departure 
angle is an important signature of the process discussed here. At sufficiently 
low temperatures, Tw � 100 mK, the matrix element becomes 

(4.43) 
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independent of the adsorption potential. The average transition probability 
for a thermal beam at normal incidence is 

(4.44) 

Notice that eq. ( 4.44) has the same low-temperature limit as the sticking 
process. Numerical evaluation shows that the probability for direct in­
elastic scattering is many orders of magnitude smaller than the sticking 
probability. 

4.6. Thermal accommodation and boundary resistance 

As is well known, at low temperatures thermal contact across interfaces 
becomes very poor. For non-conducting materials this arises from Kapitza­
type thermal boundary resistances. It follows from the previous sections 
that the interface between H gas and liquid helium is no exception to this 
rule, although it compares favorably with the usual acoustic mismatch. 
Any inelastic scattering process will contribute to the heat transfer. To 
quantify the quality of thermal contact, the present section is devoted to 
relating the scattering probabilities derived in the previous sections to ther­
mal accommodation. 

The heat transfer is characterized by the thermal accommodation coef­
ficient o:. If the energy carried by an incident flux of atoms is fully ac­
commodated ( o: = 1) the atoms leave the surface at wall temperature. In 
the absence of any accommodation (o: = 0) no energy is exchanged. The 
accommodation coefficient is defined as 

(4.45) 

where Q
g

, Q0 and CJw represent, respectively, the average energy fluxes 
carried by the incident flux <Pin, the actual outgoing flux <Pout and a fully 
accommodated outgoing flux. In steady state <Pout = <Pin = <Ji = ¼n

g
vA 

and, accounting only for kinetic energy, one has 

(4.46) 

The heat flux Q0 is related to the net heat flux Q from gas to surface by 
the relation Q0 = Q

g 
- Q. Thus for T

g 
-+ Tw, Q may be expressed as 

( 4.47) 
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Comparing eq. ( 4.47) with the usual definition of the Kapitza resistance,RK = limLJ.r-,o AT/Q, one finds 

( 4.48)
An important expression, due to Goldman [75], relates the accommoda­tion coefficient for the sticking process to the thermally averaged stickingcoefficient in steady-state. To derive this relation assume that s depends

on T
g 

and Tw in a separable manner s(T
g,Tw) = J(Tw)S(T

g
)- Then, thenet heat transfer is

Q= -f(Tw){S(T
g
) J <Pout (E,0:Tw)E dE d0

- J S(E,0)<PPB(E,0;T
g
)E dE d0}, ( 4.49)

where <Pout(E, 0; T) represents the distribution function of the flux of atomsleaving the surface, normalized to the incident flux. Note that <Pout dependsonly on Tw as the atoms fully thermalize after adsorption. The detailed
balance condition for thermal equilibrium may be used to eliminate the
unknown distribution <Pout from eq. ( 4.49). An expression for a follows by
substitution of the result into eq. ( 4.45) and evaluating the limit T

g 
-, Tw for a Boltzmann gas

(T) = l (T) J S(E 0)� [PB(E, 0; T)] E dE d0.a 
2

8 ' oT ksS(T) 
Straightforward evaluation of the integral results in

[ ld lnS(T) ld2 lnS(T)] a(T) = s(T) l + 2 d ln T + 2 ( d ln T) 2 

(4.50)

(4.51)
This expression is equivalent to the expression of Goldman if the explicitdependence on Tw is suppressed, i.e., for s(T) = S(T). 

5. Experimental results

5.1. Measurements of the sticking coefficient 

5.1.1. Magnetic resonance experimentsThe sticking coefficient was first measured by Jochemsen et al. [81. 3] atUBC with magnetic resonance on H at 1420 MHz using pure 4He and pure
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3He surface coverages. The resonance signal shows a frequency shift 6-w 
and a decay rate r2-

1 that depend on the surface adsorption. For an atom
resident on the surface the resonance frequency is shifted by an amount .d

8
, 

leading to an average phase shift per sticking event ¢ = 27rTa.ds where Ta 

is the average residency time on the surface given in eq. (3.2). The phase 
shift ¢ depends exponentially on temperature. If both the distribution of 
the residency times and that of times between sticking events obey Poisson 
statistics, the frequency shift and decay rate may be given by [81] 

l ¢ 
6-w=--­

Tbl+</>2' 

1 1  ¢2 

T2 Tb 1 + ¢2' 

(5.1) 

(5.2) 

where Tb is the average time between sticking events. Equations (5.1) and 
(5.2) imply a maximum frequency shift 6-Wmax = (2Tb)-1 and a maxi­
mum decay rate (T

2
-1 ) max = T; 1 , which may be found by varying the

temperature. The authors determined the sticking coefficient s by com­
paring the calculated (by computer simulation) mean time between wall­
collisions Tc to the observed mean time between sticking events Tb, assuming 
Tc/Tb = s(T). This is only approximately correct as will be discussed in 
section 5.3 Jochemsen et al. founds = 0.016(5) for H on 3He at T,:::: 95 mK 
and s = 0.035( 4) for H on 4He at T ,:::: 200 mK. A reanalysis by Morrow 
and Hardy [82] resulted in a value of s = 0.046 for H on 4He. The results
are shown in fig. 12. 

5.1. 2. Capillary flow experiment 

Berkhout et al. [83] used a capillary flow method to extract the sticking 
coefficient. In this experiment a buffer volume V is filled with H to a density 
n

g
. The gas was then allowed to flow through a capillary to a volume kept 

free of H-atoms. Under these conditions T
g 

= T8 • The flow P through the 
capillary depends on the H flux entering the capillary and the transmission 
coefficient ( Clausing factor) K: 

(5.3) 

where N is the number of atoms in the buffer volume, and A the entrance 
orifice of the capillary. By measuring T the Clausing factor follows from 
K = To/T, where T0-

1 
= ¼vA/V. To determine s the relation between 

K and s must be known. In the Knudsen flow regime and for s = 1 
the Clausing factor assumes its Knudsen value KK , purely determined by 

_________ =
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Fig. 12. The sticking probability as determined by Berkhout et al. [83] with the capillary 
method. Also the UBC results [82] are shown. 

geometrical factors and thus temperature independent. For capillaries with 
large ratio of length l over radius a, KK = 8a/3l. In the geometry of 
Berkhout et al. KK = 0.0284 [83]. Fors= 0 the Clausing factor is 1, that 
is, every particle entering the capillary will scatter specularly until it leaves 
at the other end. The relation between s and K for several values of interest 
of s was determined by a one-speed Monte Carlo computer simulation. This 
is only approximately correct. We return to this point in the discussion. 
The capillary flow results are given in fig. 12. The sticking coefficient turns 
out to be proportional to T and may be given within 10% experimental 
accuracy as sT- 1 = 0.33 K- 1 in the range 73 < T < 526 mK. The results 
are shown in fig. 12. It is remarkable that within experimental errors is the 
same for 4He surfaces and for surfaces of 3He 4He mixtures. The surface 
of these mixture films is believed to be very similar to that of pure 3He 
films [84]. 
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Fig. 13. The principle of the mirror experiment. For a discussion see the text. 

5.1. 3. Mirror experiment 

To demonstrate the dominance of elastic scattering Berkhout et al. [85] 
measured the specular reflectivity of a helium surface at normal incidence 
with a helium coated hemispheric mirror. This experiment is quite similar 
in concept to the capillary flow experiment described before. A buffer 
volume VB is filled with hydrogen to a density of 1014 atoms/cm3

. The 
gas expands through an orifice and is detected on a pumping plate H-flux 
detector [86] which also keeps the secondary volume free of hydrogen. The 
exponential decay time of the flux escaping the buffer volume is measured. 
If specular reflection is dominant this quantity should depend strongly on 
the position of the hemispheric mirror as illustrated in fig. 13. If the center 
of the mirror does not coincide with the exit orifice of the buffer volume 
VB, as sketched in fig. 13a, the buffer volume will be emptied as in the 
absence of the mirror. However, if mirror-center and exit-orifice coincide, 
as shown in fig. 13b, the beam of atoms expanding through the diaphragm 
is reflected back into the buffer volume, causing the exponential decay 
time to be much longer. Under these conditions, the loss from the storage 
volume depends on the reflectivity of the mirror, which in turn depends on 
the inelastic scattering phenomena at the helium surface (see fig. 13a). If 
the dimensions and temperature of the cell are accurately known, one may 
calculate the loss factor x representing the probability that an atom is not 

scattered back into the buffer volume 

To To dN 
x=-�---

T N dt (5.4) 
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Fig. 14. The loss factor as a function of the vertical mirror position as observed by 
Berkhout et al. [85]. 

Here N is the total number of atoms in the buffer volume and To= 4VB /vA 
the first-order decay time in the absence of the mirror and A is the cross­
sectional area of the orifice. In fig. 14 the loss factor is shown as a function 
of the position of the mirror. With the mirror far from focusing conditions 
the loss is found to approach unity as in the absence of the mirror. As 
seen from the figure, the loss from the buffer volume may be reduced by 
a factor 4-5 by proper adjustment of the mirror. This represents the first 
demonstration of focusing of an atomic beam by means of a mirror. In 
the absence of lateral misalignment and mirror aberrations the loss at the 
minimum of the position scan corresponds to the deviation from perfect 
reflectivity of the mirror. In this way specular reflectivities larger 80% were 
observed. By measuring the reflectivity as a function of temperature and 
comparing with the capillary flow data some evidence for the occurrence 
of quasi-elastic scattering was obtained in these experiments. 

5.2. Measurements of the accommodation coefficient 

To measure the accommodation coefficient of H on 4He, several experimen­
tal methods have been used. The results are compiled in fig. 15. In the 
first experiment, by Salonen et al. [87] ballistic heat transport was mea­
sured with a time-of-flight method. A pulsed heater was used to increase 
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the temperature of a helium film. H-atoms striking this film will on average 
gain some kinetic energy. This increase in kinetic energy was observed as 
a net heat transfer to a bolometer positioned opposite to the heater. At 
ambient temperatures of about 400 mK, in addition a signal with a slower 
time-of-flight response due to evaporating He atoms was observed. By sub­
tracting signals with and without H in the sample cell the signal due to 
the H itself was obtained. From the comparison of this signal with the 
He signal, knowing the sticking coefficient for 4He atoms incident on liquid
4He surfaces to be very close to 1, the accommodation coefficient for H was 
obtained. The result wa...'l given as a = 0.2(1) in the temperature range 
200 to 500 mK. Some indication of decreasing a with decreasing atomic 
speed was observed, but the signal-to-noise ratio did not allow any definite 
statement. 

The heat loss of an electrically heated bolometer suspended in H gas 
by thin wires was measured by Salonen et al. [88]. The accommodation 
coefficient is found by applying eq. ( 4.45). A difficulty of this method is 
the determination of the gas temperature T

g 
of the atoms incident on the 

bolometer. For a small bolometer T
g 

approaches the ambient temperature 
in the limit that the mean free path goes to infinity. The measurements 
were made as a function of H density and extrapolated to zero density for 
several ambient temperatures but constant bolometer surface temperature. 
By extrapolating to zero temperature difference a value of a = 0.18(5) at 
440 mK may be obtained. The authors saw evidence for an increasing 
accommodation coefficient with decreasing kinetic energy of the incident 
atoms. 

An estimate for the accommodation coefficient was also reported by Bell 
et al. [89]. In this experiment the main objective was the measurement of 
relaxation and recombination of a sample of compressed H. The tempera­
ture difference was measured between both sides of a pancake-like sample 
bounded by a thermally floating and a rigidly pinned surface. The accom­
modation coefficient was obtained from a model involving heating due to 
surface and volume recombination, the thermal conductivity of the gas, the 
accommodation process itself and the Kapitza resistance of the liquid-solid 
interface. The authors extracted an accommodation coefficient varying 
from 0.8(4) at 600 mK down to 0.4(2) at 275 mK. 

The most complete determination of a was done by Helffrich et al. [90], 
who used a method similar to that of Salonen et al. [88], but using lower H 
densities and a better characterized bolometer. The authors present a thor­
ough analysis of the possible systematic errors inherent to this measurement 
method. The results are shown in fig. 15. The accommodation coefficient 
was found to be proportional to T and may be given within about 10% ex-
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perimental accuracy as nT- 1 
= 0.5 K- 1 in the range 180 < T < 400 mK. 

5. 3. Discussion, recent developments and prospects

In evaluating and comparing the various experimental results for sticking 
and accommodation it may be useful to mention some limitations on their 
validity and use. The procedure used by the UBC group to extract the 
sticking coefficient from the magnetic resonance data has some clear limits 
to its validity [85]. As specular reflection and direct-inelastic scattering are 
(quasi) elastic processes, the speed of the H-atoms is conserved between 
sticking events, and the relation Tc/Tb = s(T) is not valid. For perfectly 
rough walls, where the angle of incidence and reflection with respect to the 
macroscopic plane of the surface are uncorrelated, the correct relation is 
Tb(v) = Tc(v)/s(v) with Tc (v) = Tcv/v. The thermally averaged value for 
Tb, which is observed, is found from 

Tb= j Tb(v).P(v) dv/ j .P(v) dv, (5.5) 

in which .P(v) is the incident flux on the surface. It is easy to show s(v) 
should equal mt•2 /4kB To ifs is to have a linear temperature dependence 
s = T/To . With eq. (5.5) this results in Tb = 4Tc/s(T). Similarly. for 
s(T) ~ T1 12 the result is Tb = l.5Tc/ s(T). Therefore, the exact relation
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between s and Tc/Tb depends on the functional behavior of s( v) and, if the 
walls are not perfectly rough, also on the geometry of the sample volume. 
Smooth walls tend to increase Tb for a given value of s and Tc - This means 
that the results of the UBC group are lower limits on the sticking coefficient. 

Also the capillary flow data, analyzed with a one-speed simulation model 
may easily be criticized. A proper model should include a thermal average 
of s(E, 0) and as such requires input of energies outside the measured range 
of temperatures. The error made by the one-speed model is thus dependent 
on the temperature dependence extracted. An analysis of these errors is 
currently not available, but unpublished recent estimates show that these 
may be substantial for a linear temperature dependence [91]. In this respect 
the measurements of the accommodation appear to be cleaner. 

It is also interesting to mention briefly the very recent results of Doyle 
et al. [92] who used ultra-cold H-atoms from a magnetic trap to measure s 
at much lower temperatures than in previous experiments. In these experi­
ments T

g 
« Tw and in view of the discussion of section 4.5.2 it is reasonable 

to assume that the sticking channel is dominant. Doyle et al. established 
the absence of the direct channel by varying the surface temperature. By 
measuring the decay rate of the sample when temperature and wall collision 
rate are known, s(E) may be extracted. The results are shown in fig. 16. 
The sticking probability does not fall off but rather increases at decreasing 
temperature. A plausible explanation for this phenomenon may be a res­
onance phenomenon as in the theory of Goldman [75]. Hijmans et al. [70] 
used a realistic adsorption potential and claim that resonant enhancement 
may only be explained if substrate effects dominate the adsorption. Carraro 
and Cole [93] arrive at the same conclusion and show that the agreement 
with the low-temperature experimental data may be improved by includ­
ing corrections to the DWBA approximation used by Hijmans et al. These 
corrections typically lead to an increase of the sticking probability by a 
factor of 2. Other theoretical arguments that may lead to large sticking 
are presented by Martin et al. [94], but it is not clear whether this theory 
is applicable here. 

Looking at the future there are various interesting continuations of the 
ongoing research of atom surface scattering. The most systematic ap­
proach is to aim for energy- and angular-resolved scattering experiments. 
In this way uncertainties associated with thermal averaging may be avoided 
and the narrow quasi-elastic peak may be resolved. Such an effort is a very 
demanding task. Other ways to fingerprint direct-inelastic scattering is to 
vary atom energy and surface-temperature independently. Also the effect 
of 3 He coverages on the scattering deserves to be further investigated. To 
measure the low-temperature sticking limit on liquid helium, bulk liquid 
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Fig. 16. Sticking probability versus atom energy. The open circles and squares are the 
results of Doyle et al. [92]. The solid dots are the results of Berkhout et al. [85]. For 
a global comparison the theoretical model results of Hijmans et al. [70] (for normal 
incidence) are given. 

should be used. By substrate variation, the importance of substrate effects 
at low temperatures may be demonstrated. 

The future of helium covered mirrors is hard to assess. To manipulate 
H-atom beams they may proof valuable. A logical continuation of the mir­
ror experiments could be diffraction experiments on a ruled grating covered
with liquid helium. Helium covered zone-plates could be used (in reflec-·
tion) to velocity select and focus H-beams. This may prove an interesting
alternative to time-of-flight scattering experiments.
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